1. Microbiology and Infectious Disease
Download icon

Two-component Signaling Pathways: A bacterial Goldilocks mechanism

  1. Irene M Kim
  2. Hendrik Szurmant  Is a corresponding author
  1. Western University of Health Sciences, United States
Insight
  • Cited 2
  • Views 969
  • Annotations
Cite this article as: eLife 2020;9:e54244 doi: 10.7554/eLife.54244

Abstract

Bacillus subtilis can measure the activity of the enzymes that remodel the cell wall to ensure that the levels of activity are ‘just right’.

Main text

When mollusks get bigger, their shells grow with them to accommodate the changing shape and size of the organism being housed. Something similar also happens in bacteria. The cell wall of most bacteria consists of a single macromolecule called peptidoglycan that surrounds the cell and is made up of modified sugars that are crosslinked through peptide side chains. Like sea shells, bacteria come in different sizes and the cell wall dictates their shape (Cabeen and Jacobs-Wagner, 2007). The cell wall also protects bacteria from adverse environmental conditions, but it must be constantly remodeled so that rapid bacterial growth and division can take place. The enzymes in charge of this remodeling process are called autolysins, and their activity must be regulated to stop bacteria from losing their cell wall.

Signal transduction systems are protein systems that detect molecular or physical cues and translate them into an appropriate cellular response. In bacteria, signal transduction is commonly regulated by two-component systems, known as TCS for short (Zschiedrich et al., 2016). Usually the two components are a signal detector and a transcription factor that communicate with one another through the transfer of a phosphoryl group.

An important TCS in the soil bacterium Bacillus subtilis and other related bacteria is the WalRK system, which is essential for viability (Szurmant, 2012). The system, which is comprised of the signal-detecting protein WalK and the transcription factor WalR, gets its name from its role in maintaining the cell wall (Dubrac et al., 2007). Together these two components regulate the expression of several autolysin genes, including those for the enzymes LytE and CwlO, which are required for cell elongation (Salzberg et al., 2013). Now, in eLife, David Rudner and colleagues at Harvard Medical School – including Genevieve Dobihal and Yannick Brunet as joint first authors, along with Josué Flores-Kim – report on how the WalRK system in B. subtilis detects and responds to autolysin levels (Dobihal et al., 2019).

Dobihal et al. first observed that B. subtilis can measure the levels of autolysin activity and, if they are too low for the cell to grow, can adjust them accordingly. Next, they examined if the reverse is also true: can the cell identify if autolysin activity is too high to retain the protective shell, and reduce autolysin expression appropriately? Indeed, when the autolysin LytE is artificially overproduced, the cell reduces endogenous production of this enzyme. Thus the bacterium employs homeostatic control to ensure that autolysin activity is 'not too much, not too little, but just right', just like in the tale of Goldilocks and the three bears (Figure 1). This equilibrium is important given that mis-regulated autolysin activity can lead to cell lysis and defects in the permeability of the membrane.

The Goldilocks principle applied to bacterial cell wall homeostasis.

The bacterial cell wall (top left) consists of sugar strands (hexagons) that are crosslinked via peptide bonds between their peptide sidechains (small circles). Cell expansion requires the incorporation of new cell wall material. Autolysin enzymes cleave the peptide crosslinks to allow for expansion. Insufficient autolysin activity prevents expansion and thus growth (bottom left). Uncontrolled autolysin activity results in cell wall destruction and lysis (indicated by yellow stars, top right). When the autolysin activity is ‘just right’, the cell wall expands (red) and its integrity is maintained (bottom right).

Dobihal et al. then used several reporters to measure the expression of different genes regulated by WalR, and found they all responded similarly to the overexpression and deletion of the gene for LytE. This suggests that LytE and CwlO activity is directly detected by the WalRK system, but the precise signal used by the WalRK system to detect this activity remained unknown, as did the mechanism of detection.

WalK is a multi-domain membrane-spanning protein that has two domains commonly associated with signal detection: one of these domains faces the outside of the cell whereas the other faces the inside (Fukushima et al., 2011). WalK interacts with two other proteins that inhibit its activity, WalH and WalI (Szurmant et al., 2007; Szurmant et al., 2008). The signal for autolysin levels could be perceived by either of the two inhibitor proteins or by one of the signal detection domains of WalK. Dobihal et al. deleted domains in WalH, WalI and WalK to determine which protein detected the signal, demonstrating that the WalK domain that faces the outside of the cell is the only one required.

But what is the signal detected by WalK? LytE and CwlO are both able to cleave peptide bonds, probably to reduce crosslinks in the cell wall (Bisicchia et al., 2007). WalK could therefore be responding to a physical signal, such as a change in the tension exerted by a cell wall with too many or too few crosslinks. Alternatively, the signal could be of a chemical nature, such as a peptide being released when the autolysins remodel the cell wall. To distinguish between these two possibilities, Dobihal et al. exposed the purified cell wall of B. subtilis to the CwlO enzyme in vitro, and then applied the cleavage products of the reaction to B. subtilis cultures. The results showed that the cleavage products of CwlO can affect the expression of genes regulated by WalR. Exactly which molecule interacts with WalK to relay the signal remains unknown.

The findings by Dobihal et al. contribute to our understanding of the WalRK two-component system in B. subtilis. The spherical bacteria Staphylococcus aureus and Streptococcus pneumoniae are distant relatives of B. subtilis and also use the WalRK system to modulate autolysin gene expression, despite not growing by cell wall elongation (Ng and Winkler, 2004; Dubrac et al., 2007). Differences in domain architecture of WalK (S. pneumoniae) or cell wall crosslinks (S. aureus) dictate that the signal to modulate WalRK activity must be different from the one used by B. subtilis. Even in B. subtilis previous results suggested that there might be additional signals detected by WalK that are related to cell division (Fukushima et al., 2011). Thus, a unifying theme for the role of WalRK in all these bacteria remains unclear, and requires additional studies to build on these exciting new insights.

References

  1. Book
    1. Szurmant H
    (2012)
    Essential two-component systems of gram-positive bacteria
    In: Gross R, Beier D, editors. Two-Component Systems in Bacteria, 1. Norwich: Caister Scientific Press. pp. 127–147.

Article and author information

Author details

  1. Irene M Kim

    Irene M Kim is at the College of Osteopathic Medicine of the Pacific in the Western University of Health Sciences, Pomona, California

    Competing interests
    No competing interests declared
  2. Hendrik Szurmant

    Hendrik Szurmant is at the College of Osteopathic Medicine of the Pacific in the Western University of Health Sciences, Pomona, California

    For correspondence
    hszurmant@westernu.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6970-9566

Publication history

  1. Version of Record published: January 24, 2020 (version 1)

Copyright

© 2020, Kim and Szurmant

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 969
    Page views
  • 100
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    Jaeeun Park et al.
    Research Article Updated

    Modification of the outer membrane charge by a polymyxin B (PMB)-induced PmrAB two-component system appears to be a dominant phenomenon in PMB-resistant Acinetobacter baumannii. PMB-resistant variants and many clinical isolates also appeared to produce outer membrane vesicles (OMVs). Genomic, transcriptomic, and proteomic analyses revealed that upregulation of the pmr operon and decreased membrane-linkage proteins (OmpA, OmpW, and BamE) are linked to overproduction of OMVs, which also promoted enhanced biofilm formation. The addition of OMVs from PMB-resistant variants into the cultures of PMB-susceptible A. baumannii and the clinical isolates protected these susceptible bacteria from PMB. Taxonomic profiling of in vitro human gut microbiomes under anaerobic conditions demonstrated that OMVs completely protected the microbial community against PMB treatment. A Galleria mellonella-infection model with PMB treatment showed that OMVs increased the mortality rate of larvae by protecting A. baumannii from PMB. Taken together, OMVs released from A. baumannii functioned as decoys against PMB.

    1. Microbiology and Infectious Disease
    Elisa De Crignis et al.
    Research Article

    The molecular events that drive Hepatitis B virus (HBV)-mediated transformation and tumorigenesis have remained largely unclear, due to the absence of a relevant primary model system. Here we propose the use of human liver organoids as a platform for modeling HBV infection and related tumorigenesis. We first describe a primary ex vivo HBV-infection model derived from healthy donor liver organoids after challenge with recombinant virus or HBV-infected patient serum. HBV infected organoids produced cccDNA, HBeAg, expressed intracellular HBV RNA and proteins, and produced infectious HBV. This ex vivo HBV infected primary differentiated hepatocyte organoid platform was amenable to drug screening for both anti-HBV activity as well as for drug-induced toxicity. We also studied HBV replication in transgenically modified organoids; liver organoids exogenously overexpressing the HBV receptor NTCP after lentiviral transduction were not more susceptible to HBV, suggesting the necessity for additional host factors for efficient infection. We also generated transgenic organoids harboring integrated HBV, representing a long-term culture system also suitable for viral production and the study of HBV transcription. Finally, we generated HBV-infected patient-derived liver organoids from non-tumor cirrhotic tissue of explants from liver transplant patients. Interestingly, transcriptomic analysis of patient-derived liver organoids indicated the presence of an aberrant early cancer gene signature, which clustered with the HCC cohort on the TCGA LIHC dataset and away from healthy liver tissue, and may provide invaluable novel biomarkers for the development of HCC and surveillance in HBV infected patients.