Integrase-RNA interactions underscore the critical role of integrase in HIV-1 virion morphogenesis

  1. Jennifer L Elliott
  2. Jenna Eve Eschbach
  3. Pratibha C Koneru
  4. Wen Li
  5. Maritza Puray Chavez
  6. Dana Townsend
  7. Dana Q Lawson
  8. Alan N Engelman
  9. Mamuka Kvaratskhelia
  10. Sebla Bulent Kutluay  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. University of Colorado School of Medicine, United States
  3. Department of Cancer Immunology and Virology, United States
  4. Dana-Farber Cancer Institute, United States

Abstract

A number of human immunodeficiency virus 1 integrase (IN) alterations, referred to as class II substitutions, exhibit pleotropic effects during virus replication. However, the underlying mechanism for the class II phenotype is not known. Here we demonstrate that all tested class II IN substitutions compromised IN-RNA binding in virions by one of three distinct mechanisms: i) markedly reducing IN levels thus precluding formation of IN complexes with viral RNA; ii) adversely affecting functional IN multimerization and consequently impairing IN binding to viral RNA; iii) directly compromising IN-RNA interactions without substantially affecting IN levels or functional IN multimerization. Inhibition of IN-RNA interactions resulted in mislocalization of the viral ribonucleoprotein complexes outside the capsid lattice, which led to premature degradation of the viral genome and IN in target cells. Collectively, our studies uncover causal mechanisms for the class II phenotype and highlight an essential role of IN-RNA interactions for accurate virion maturation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jennifer L Elliott

    Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jenna Eve Eschbach

    Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pratibha C Koneru

    Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3955-4548
  4. Wen Li

    Dana-Farber Cancer Institute, Department of Cancer Immunology and Virology, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Maritza Puray Chavez

    Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Dana Townsend

    Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dana Q Lawson

    Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alan N Engelman

    Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Mamuka Kvaratskhelia

    Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3800-0033
  10. Sebla Bulent Kutluay

    Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
    For correspondence
    kutluay@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5549-7032

Funding

National Institutes of Health (GM103297)

  • Sebla Bulent Kutluay

National Institutes of Health (GM122458)

  • Sebla Bulent Kutluay

National Institutes of Health (AI143389)

  • Jennifer L Elliott

National Institutes of Health (AI062520)

  • Mamuka Kvaratskhelia
  • Sebla Bulent Kutluay

National Institutes of Health (AI150472)

  • Mamuka Kvaratskhelia

National Institutes of Health (AI070042)

  • Alan N Engelman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Elliott et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,072
    views
  • 345
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer L Elliott
  2. Jenna Eve Eschbach
  3. Pratibha C Koneru
  4. Wen Li
  5. Maritza Puray Chavez
  6. Dana Townsend
  7. Dana Q Lawson
  8. Alan N Engelman
  9. Mamuka Kvaratskhelia
  10. Sebla Bulent Kutluay
(2020)
Integrase-RNA interactions underscore the critical role of integrase in HIV-1 virion morphogenesis
eLife 9:e54311.
https://doi.org/10.7554/eLife.54311

Share this article

https://doi.org/10.7554/eLife.54311

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Michael B Hall, Ryan R Wick ... Lachlan Coin
    Research Article

    Variant calling is fundamental in bacterial genomics, underpinning the identification of disease transmission clusters, the construction of phylogenetic trees, and antimicrobial resistance detection. This study presents a comprehensive benchmarking of variant calling accuracy in bacterial genomes using Oxford Nanopore Technologies (ONT) sequencing data. We evaluated three ONT basecalling models and both simplex (single-strand) and duplex (dual-strand) read types across 14 diverse bacterial species. Our findings reveal that deep learning-based variant callers, particularly Clair3 and DeepVariant, significantly outperform traditional methods and even exceed the accuracy of Illumina sequencing, especially when applied to ONT’s super-high accuracy model. ONT’s superior performance is attributed to its ability to overcome Illumina’s errors, which often arise from difficulties in aligning reads in repetitive and variant-dense genomic regions. Moreover, the use of high-performing variant callers with ONT’s super-high accuracy data mitigates ONT’s traditional errors in homopolymers. We also investigated the impact of read depth on variant calling, demonstrating that 10× depth of ONT super-accuracy data can achieve precision and recall comparable to, or better than, full-depth Illumina sequencing. These results underscore the potential of ONT sequencing, combined with advanced variant calling algorithms, to replace traditional short-read sequencing methods in bacterial genomics, particularly in resource-limited settings.

    1. Microbiology and Infectious Disease
    Malik Zohaib Ali, Taru S Dutt ... Mercedes Gonzalez Juarrero
    Research Article

    The Nix-TB clinical trial evaluated a new 6 month regimen containing three oral drugs; bedaquiline (B), pretomanid (Pa), and linezolid (L) (BPaL regimen) for the treatment of tuberculosis (TB). This regimen achieved remarkable results as almost 90% of the multidrug-resistant or extensively drug-resistant TB participants were cured but many patients also developed severe adverse events (AEs). The AEs were associated with the long-term administration of the protein synthesis inhibitor linezolid. Spectinamide 1599 is also a protein synthesis inhibitor of Mycobacterium tuberculosis with an excellent safety profile, but it lacks oral bioavailability. Here, we propose to replace L in the BPaL regimen with spectinamide (S) administered via inhalation and we demonstrate that inhaled spectinamide 1599, combined with BPa ––BPaS regimen––has similar efficacy to that of the BPaL regimen while simultaneously avoiding the L-associated AEs. The BPaL and BPaS regimens were compared in the BALB/c and C3HeB/FeJ murine chronic TB efficacy models. After 4-weeks of treatment, both regimens promoted equivalent bactericidal effects in both TB murine models. However, treatment with BPaL resulted in significant weight loss and the complete blood count suggested the development of anemia. These effects were not similarly observed in mice treated with BPaS. BPaL and BPa, but not the BPaS treatment, also decreased myeloid to erythroid ratio suggesting the S in the BPaS regimen was able to recover this effect. Moreover, the BPaL also increased concentration of proinflammatory cytokines in bone marrow compared to mice receiving BPaS regimen. These combined data suggest that inhaled spectinamide 1599 combined with BPa is an effective TB regimen without L-associated AEs.