Integrase-RNA interactions underscore the critical role of integrase in HIV-1 virion morphogenesis

  1. Jennifer L Elliott
  2. Jenna Eve Eschbach
  3. Pratibha C Koneru
  4. Wen Li
  5. Maritza Puray Chavez
  6. Dana Townsend
  7. Dana Q Lawson
  8. Alan N Engelman
  9. Mamuka Kvaratskhelia
  10. Sebla Bulent Kutluay  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. University of Colorado School of Medicine, United States
  3. Department of Cancer Immunology and Virology, United States
  4. Dana-Farber Cancer Institute, United States

Abstract

A number of human immunodeficiency virus 1 integrase (IN) alterations, referred to as class II substitutions, exhibit pleotropic effects during virus replication. However, the underlying mechanism for the class II phenotype is not known. Here we demonstrate that all tested class II IN substitutions compromised IN-RNA binding in virions by one of three distinct mechanisms: i) markedly reducing IN levels thus precluding formation of IN complexes with viral RNA; ii) adversely affecting functional IN multimerization and consequently impairing IN binding to viral RNA; iii) directly compromising IN-RNA interactions without substantially affecting IN levels or functional IN multimerization. Inhibition of IN-RNA interactions resulted in mislocalization of the viral ribonucleoprotein complexes outside the capsid lattice, which led to premature degradation of the viral genome and IN in target cells. Collectively, our studies uncover causal mechanisms for the class II phenotype and highlight an essential role of IN-RNA interactions for accurate virion maturation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jennifer L Elliott

    Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jenna Eve Eschbach

    Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pratibha C Koneru

    Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3955-4548
  4. Wen Li

    Dana-Farber Cancer Institute, Department of Cancer Immunology and Virology, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Maritza Puray Chavez

    Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Dana Townsend

    Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dana Q Lawson

    Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alan N Engelman

    Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Mamuka Kvaratskhelia

    Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3800-0033
  10. Sebla Bulent Kutluay

    Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
    For correspondence
    kutluay@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5549-7032

Funding

National Institutes of Health (GM103297)

  • Sebla Bulent Kutluay

National Institutes of Health (GM122458)

  • Sebla Bulent Kutluay

National Institutes of Health (AI143389)

  • Jennifer L Elliott

National Institutes of Health (AI062520)

  • Mamuka Kvaratskhelia
  • Sebla Bulent Kutluay

National Institutes of Health (AI150472)

  • Mamuka Kvaratskhelia

National Institutes of Health (AI070042)

  • Alan N Engelman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Elliott et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,105
    views
  • 349
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer L Elliott
  2. Jenna Eve Eschbach
  3. Pratibha C Koneru
  4. Wen Li
  5. Maritza Puray Chavez
  6. Dana Townsend
  7. Dana Q Lawson
  8. Alan N Engelman
  9. Mamuka Kvaratskhelia
  10. Sebla Bulent Kutluay
(2020)
Integrase-RNA interactions underscore the critical role of integrase in HIV-1 virion morphogenesis
eLife 9:e54311.
https://doi.org/10.7554/eLife.54311

Share this article

https://doi.org/10.7554/eLife.54311

Further reading

    1. Microbiology and Infectious Disease
    Yasmina Reisser, Franziska Hornung ... Stefanie Deinhardt-Emmer
    Research Article

    The telomerase RNA component (Terc) constitutes a non-coding RNA critical for telomerase function, commonly associated with aging and pivotal in immunomodulation during inflammation. Our study unveils heightened susceptibility to pneumonia caused by Staphylococcus aureus (S. aureus) in Terc knockout (Tercko/ko) mice compared to both young and old infected counterparts. The exacerbated infection in Tercko/ko mice correlates with heightened inflammation, manifested by elevated interleukin-1β (IL-1β) levels and activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome within the lung. Employing mRNA sequencing methods alongside in vitro analysis of alveolar macrophages (AMs) and T cells, our study elucidates a compelling correlation between Tercko/ko, inflammation, and impaired T cell functionality. Terc deletion results in compromised T cell function, characterized by dysregulation of the T cell receptor and absence of CD247, potentially compromising the host’s capacity to mount an effective immune response against S. aureus. This investigation provides insights into the intricate mechanisms governing increased vulnerability to severe pneumonia in the context of Terc deficiency, which might also contribute to aging-related pathologies, while also highlighting the influence of Terc on T cell function.

    1. Microbiology and Infectious Disease
    Li Zhang, Fen Hu ... Hang Yang
    Research Article

    Phage-derived peptidoglycan hydrolases (i.e. lysins) are considered promising alternatives to conventional antibiotics due to their direct peptidoglycan degradation activity and low risk of resistance development. The discovery of these enzymes is often hampered by the limited availability of phage genomes. Herein, we report a new strategy to mine active peptidoglycan hydrolases from bacterial proteomes by lysin-derived antimicrobial peptide-primed screening. As a proof-of-concept, five peptidoglycan hydrolases from the Acinetobacter baumannii proteome (PHAb7-PHAb11) were identified using PlyF307 lysin-derived peptide as a template. Among them, PHAb10 and PHAb11 showed potent bactericidal activity against multiple pathogens even after treatment at 100°C for 1 hr, while the other three were thermosensitive. We solved the crystal structures of PHAb8, PHAb10, and PHAb11 and unveiled that hyper-thermostable PHAb10 underwent a unique folding-refolding thermodynamic scheme mediated by a dimer-monomer transition, while thermosensitive PHAb8 formed a monomer. Two mouse models of bacterial infection further demonstrated the safety and efficacy of PHAb10. In conclusion, our antimicrobial peptide-primed strategy provides new clues for the discovery of promising antimicrobial drugs.