Identifying the immune interactions underlying HLA class I disease associations

  1. Bisrat J Debebe
  2. Lies Boelen
  3. James C Lee
  4. IAVI Protocol C Investigators
  5. Chloe L Thio
  6. Jacquie Astemborski
  7. Gregory Kirk
  8. Salim I Khakoo
  9. Sharyne M Donfield
  10. James J Goedert
  11. Becca Asquith  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. University of Cambridge, United Kingdom
  3. Johns Hopkins University, United States
  4. Johns Hopkins, United States
  5. University of Southampton, United Kingdom
  6. Rho, United States
  7. NCI, United States

Abstract

Variation in the risk and severity of many autoimmune diseases, malignancies and infections is strongly associated with polymorphisms in the HLA class I loci. These genetic associations provide a powerful opportunity for understanding the etiology of human disease. HLA class I associations are often interpreted in the light of 'protective' or 'detrimental' CD8+ T cell responses which are restricted by the host HLA class I allotype. However, given the diverse receptors which are bound by HLA class I molecules, alternative interpretations are possible. As well as binding T cell receptors on CD8+ T cells, HLA class I molecules are important ligands for inhibitory and activating killer immunoglobulin-like receptors (KIRs) which are found on natural killer cells and some T cells; for the CD94:NKG2 family of receptors also expressed mainly by NK cells and for leukocyte immunoglobulin-like receptors (LILRs) on myeloid cells. The aim of this study is to develop an immunogenetic approach for identifying and quantifying the relative contribution of different receptor-ligand interactions to a given HLA class I disease association and then to use this approach to investigate the immune interactions underlying HLA class I disease associations in three viral infections: Human T cell Leukemia Virus type 1, Human Immunodeficiency Virus type 1 and Hepatitis C Virus as well as in the inflammatory condition Crohn's disease.

Data availability

Upon acceptance we will upload, to a public database, all the data analysis ie the data underlying Figure 1, Figure 2, Figure 3, Supplementary Figure S1, Supplementary Figure S2, Supplementary Figure S3 and Supplementary Figure S4. We are unable to provide the raw patient data as this has been released to us under MTAs and uploading of data would violate the terms of these MTAs.The PIs we contacted for the various cohorts are: Pat Fast, IAVI, New York (IAVI); Charles Bangham, Imperial College London, UK (Kagoshima cohort); Greg Kirk, Johns Hopkins, USA (ALIVE cohort); James Goedert, NIH (MHCS cohort); Sharyne Donfield, Rho, USA (HGDS cohort); Salim Khakoo, University of Southampton, UK (UK HCV cohort) and James Lee, University of Cambridge, UK (Crohn's disease cohort). Requests for data access and usage are reviewed by the relevant boards at each institution.

Article and author information

Author details

  1. Bisrat J Debebe

    Infectious Disease, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Lies Boelen

    Infectious Disease, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. James C Lee

    Gastroenterology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. IAVI Protocol C Investigators

  5. Chloe L Thio

    Epidemiology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jacquie Astemborski

    Epidemiology, Johns Hopkins, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gregory Kirk

    Epidemiology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Salim I Khakoo

    Medicine, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Sharyne M Donfield

    Rho, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. James J Goedert

    Division of Cancer Epidemiology and Genetics, NCI, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Becca Asquith

    Infectious Disease, Imperial College London, London, United Kingdom
    For correspondence
    b.asquith@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5911-3160

Funding

Wellcome (103865Z/14/Z)

  • Becca Asquith

National Institutes of Health (R01-DA-12568)

  • Gregory Kirk

National Institutes of Health (K24-AI118591)

  • Gregory Kirk

Medical Research Council (J007439)

  • Becca Asquith

Medical Research Council (G1001052)

  • Becca Asquith

European Commission (317040)

  • Becca Asquith

Bloodwise (15012)

  • Becca Asquith

Wellcome (105920/Z/14/Z)

  • James C Lee

National Institutes of Health (DA13324)

  • Chloe L Thio

National Institutes of Health (R01-HD-41224)

  • Sharyne M Donfield

National Institutes of Health (U01-DA-036297)

  • Gregory Kirk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was approved by the NHS Research Ethics Committee (13/WS/0064) and the Imperial College Research Ethics Committee (ICREC_11_1_2). Informed consent was obtained at the study sites from all individuals. The study was conducted according to the principles of the Declaration of Helsinki.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,267
    views
  • 567
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bisrat J Debebe
  2. Lies Boelen
  3. James C Lee
  4. IAVI Protocol C Investigators
  5. Chloe L Thio
  6. Jacquie Astemborski
  7. Gregory Kirk
  8. Salim I Khakoo
  9. Sharyne M Donfield
  10. James J Goedert
  11. Becca Asquith
(2020)
Identifying the immune interactions underlying HLA class I disease associations
eLife 9:e54558.
https://doi.org/10.7554/eLife.54558

Share this article

https://doi.org/10.7554/eLife.54558

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Saugat Poudel, Jason Hyun ... Bernhard O Palsson
    Research Article

    The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.

    1. Computational and Systems Biology
    Masaaki Uematsu, Jeremy M Baskin
    Tools and Resources

    Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.