A broad mutational target explains a fast rate of phenotypic evolution
Abstract
The rapid evolution of a trait in a group of organisms can be explained by the sustained action of natural selection or by a high mutational variance, i.e. the propensity to change under spontaneous mutation. The causes for a high mutational variance are still elusive. In some cases, fast evolution depends on the high mutation rate of one or few loci with short tandem repeats. Here, we report on the fastest evolving cell fate among vulva precursor cells in Caenorhabditis nematodes, that of P3.p. We identify and validate causal mutations underlying P3.p's high mutational variance. We find that these positions do not present any characteristics of a high mutation rate, are scattered across the genome and the corresponding genes belong to distinct biological pathways. Our data indicate that a broad mutational target size is the cause of the high mutational variance and of the corresponding fast phenotypic evolutionary rate.
Data availability
Sequencing data have been deposited at EBI under accessions PRJEB30820-2. All other data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided in Suppl File 1.
Article and author information
Author details
Funding
Agence Nationale de la Recherche (ANR-12-BSV2-0004-01)
- Marie-Anne Félix
Agence Nationale de la Recherche (ANR-18-CE13-0006-01)
- Marie-Anne Félix
Marie Sklodowska-Curie Training Grant (751530-EvoCellFate)
- Joao Picao-Osorio
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Christian R Landry, Université Laval, Canada
Publication history
- Received: January 6, 2020
- Accepted: August 27, 2020
- Accepted Manuscript published: August 27, 2020 (version 1)
- Version of Record published: October 14, 2020 (version 2)
Copyright
© 2020, Besnard et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,527
- Page views
-
- 314
- Downloads
-
- 6
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
- Evolutionary Biology
Phytoplankton rely on diverse mechanisms to adapt to the decreased iron bioavailability and oxidative stress-inducing conditions of today's oxygenated oceans, including replacement of the iron-requiring ferredoxin electron shuttle protein with a less-efficient iron-free flavodoxin under iron limiting conditions. And yet, diatoms transcribe flavodoxins in high-iron regions in contrast to other phytoplankton. Here, we show that the two clades of flavodoxins present within diatoms exhibit a functional divergence, with only clade II flavodoxins displaying the canonical role in acclimation to iron limitation. We created CRISPR/Cas9 knock-outs of the clade I flavodoxin from the model diatom Thalassiosira pseudonana and found these cell lines are hypersensitive to oxidative stress, while maintaining a wild-type response to iron limitation. Within natural diatom communities, clade I flavodoxin transcript abundance is regulated over the diel cycle rather than in response to iron availability, whereas clade II transcript abundances increase either in iron‑limiting regions or under artificially induced iron-limitation. The observed functional specialization of two flavodoxin variants within diatoms reiterates two major stressors associated with contemporary oceans and illustrates diatom strategies to flourish in diverse aquatic ecosystems.
-
- Ecology
- Evolutionary Biology
Most phytophagous insect species exhibit a limited diet breadth and specialize on a few or a single host plant. In contrast, some species display a remarkably large diet breadth, with host plants spanning several families and many species. It is unclear, however, whether this phylogenetic generalism is supported by a generic metabolic use of common host chemical compounds (‘metabolic generalism’) or alternatively by distinct uses of diet-specific compounds (‘multi-host metabolic specialism’)? Here, we simultaneously investigated the metabolomes of fruit diets and of individuals of a generalist phytophagous species, Drosophila suzukii, that developed on them. The direct comparison of metabolomes of diets and consumers enabled us to disentangle the metabolic fate of common and rarer dietary compounds. We showed that the consumption of biochemically dissimilar diets resulted in a canalized, generic response from generalist individuals, consistent with the metabolic generalism hypothesis. We also showed that many diet-specific metabolites, such as those related to the particular color, odor, or taste of diets, were not metabolized, and rather accumulated in consumer individuals, even when probably detrimental to fitness. As a result, while individuals were mostly similar across diets, the detection of their particular diet was straightforward. Our study thus supports the view that dietary generalism may emerge from a passive, opportunistic use of various resources, contrary to more widespread views of an active role of adaptation in this process. Such a passive stance towards dietary chemicals, probably costly in the short term, might favor the later evolution of new diet specializations.