A community-maintained standard library of population genetic models
Abstract
The explosion in population genomic data demands ever more complex modes of analysis, and increasingly these analyses depend on sophisticated simulations. Re-cent advances in population genetic simulation have made it possible to simulate large and complex models, but specifying such models for a particular simulation engine remains a difficult and error-prone task. Computational genetics researchers currently re-implement simulation models independently, leading to inconsistency and duplication of effort. This situation presents a major barrier to empirical researchers seeking to use simulations for power analyses of upcoming studies or sanity checks on existing genomic data. Population genetics, as a field, also lacks standard benchmarks by which new tools for inference might be measured. Here we describe a new resource, stdpopsim, that attempts to rectify this situation. Stdpopsim is a community-driven open source project, which provides easy access to a growing catalog of published simulation models from a range of organisms and supports multiple simulation engine backends. This resource is available as a well-documented python library with a simple command-line interface. We share some examples demonstrating how stdpopsim can be used to systematically compare demographic inference methods, and we encourage a broader community of developers to contribute to this growing resource.
Data availability
All resources are available from https://github.com/popsim-consortium/stdpopsim
Article and author information
Author details
Funding
National Institute of General Medical Sciences (R35GM119856)
- Christopher C Kyriazis
- Kirk E Lohmueller
National Institute of General Medical Sciences (R01GM117241)
- Jeffrey R Adrion
- Andrew D Kern
National Institute of General Medical Sciences (R01GM127348)
- Travis J Struck
- Ryan N Gutenkunst
National Institute of General Medical Sciences (R00HG008696)
- Ariella L Gladstein
- Daniel R Schrider
National Institute of General Medical Sciences (R35GM127070)
- Noah Dukler
- Adam Siepel
National Human Genome Research Institute (R01HG010346)
- Noah Dukler
- Adam Siepel
Villum Fonden (00025300)
- Graham Gower
- Fernando Racimo
UC MEXUS-CONACYT
- Diego Ortega Del Vecchyo
Robertson Foundation
- Jerome Kelleher
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Graham Coop, University of California, Davis, United States
Version history
- Received: January 7, 2020
- Accepted: June 15, 2020
- Accepted Manuscript published: June 23, 2020 (version 1)
- Accepted Manuscript updated: June 25, 2020 (version 2)
- Version of Record published: August 19, 2020 (version 3)
Copyright
© 2020, Adrion et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,603
- Page views
-
- 586
- Downloads
-
- 53
- Citations
Article citation count generated by polling the highest count across the following sources: PubMed Central, Scopus, Crossref.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Neuroscience
The cerebellar granule cell layer has inspired numerous theoretical models of neural representations that support learned behaviors, beginning with the work of Marr and Albus. In these models, granule cells form a sparse, combinatorial encoding of diverse sensorimotor inputs. Such sparse representations are optimal for learning to discriminate random stimuli. However, recent observations of dense, low-dimensional activity across granule cells have called into question the role of sparse coding in these neurons. Here, we generalize theories of cerebellar learning to determine the optimal granule cell representation for tasks beyond random stimulus discrimination, including continuous input-output transformations as required for smooth motor control. We show that for such tasks, the optimal granule cell representation is substantially denser than predicted by classical theories. Our results provide a general theory of learning in cerebellum-like systems and suggest that optimal cerebellar representations are task-dependent.
-
- Computational and Systems Biology
- Neuroscience
Previous research has highlighted the role of glutamate and gamma-aminobutyric acid (GABA) in perceptual, cognitive, and motor tasks. However, the exact involvement of these neurochemical mechanisms in the chain of information processing, and across human development, is unclear. In a cross-sectional longitudinal design, we used a computational approach to dissociate cognitive, decision, and visuomotor processing in 293 individuals spanning early childhood to adulthood. We found that glutamate and GABA within the intraparietal sulcus (IPS) explained unique variance in visuomotor processing, with higher glutamate predicting poorer visuomotor processing in younger participants but better visuomotor processing in mature participants, while GABA showed the opposite pattern. These findings, which were neurochemically, neuroanatomically and functionally specific, were replicated ~21 mo later and were generalized in two further different behavioral tasks. Using resting functional MRI, we revealed that the relationship between IPS neurochemicals and visuomotor processing is mediated by functional connectivity in the visuomotor network. We then extended our findings to high-level cognitive behavior by predicting fluid intelligence performance. We present evidence that fluid intelligence performance is explained by IPS GABA and glutamate and is mediated by visuomotor processing. However, this evidence was obtained using an uncorrected alpha and needs to be replicated in future studies. These results provide an integrative biological and psychological mechanistic explanation that links cognitive processes and neurotransmitters across human development and establishes their potential involvement in intelligent behavior.