A community-maintained standard library of population genetic models

  1. Jeffrey R Adrion
  2. Christopher B Cole
  3. Noah Dukler
  4. Jared G Galloway
  5. Ariella L Gladstein
  6. Graham Gower
  7. Christopher C Kyriazis
  8. Aaron P Ragsdale
  9. Georgia Tsambos
  10. Franz Baumdicker
  11. Jedidiah Carlson
  12. Reed A Cartwright
  13. Arun Durvasula
  14. Ilan Gronau
  15. Bernard Y Kim
  16. Patrick McKenzie
  17. Philipp W Messer
  18. Ekaterina Noskova
  19. Diego Ortega Del Vecchyo
  20. Fernando Racimo
  21. Travis J Struck
  22. Simon Gravel
  23. Ryan N Gutenkunst
  24. Kirk E Lohmueller
  25. Peter L Ralph
  26. Daniel R Schrider
  27. Adam Siepel
  28. Jerome Kelleher  Is a corresponding author
  29. Andrew D Kern  Is a corresponding author
  1. University of Oregon, United States
  2. University of Oxford, United Kingdom
  3. Cold Spring Harbor Laboratory, United States
  4. University of North Carolina at Chapel Hill, United States
  5. University of Copenhagen, Denmark
  6. University of California, Los Angeles, United States
  7. McGill University, Canada
  8. University of Melbourne, Australia
  9. University of Freiburg, Germany
  10. University of Washington, United States
  11. Arizona State University, United States
  12. IDC Herzliya, Israel
  13. Stanford University, United States
  14. Columbia University, United States
  15. Cornell University, United States
  16. ITMO University, Russian Federation
  17. National Autonomous University of Mexico, Mexico
  18. University of Arizona, United States

Abstract

The explosion in population genomic data demands ever more complex modes of analysis, and increasingly these analyses depend on sophisticated simulations. Re-cent advances in population genetic simulation have made it possible to simulate large and complex models, but specifying such models for a particular simulation engine remains a difficult and error-prone task. Computational genetics researchers currently re-implement simulation models independently, leading to inconsistency and duplication of effort. This situation presents a major barrier to empirical researchers seeking to use simulations for power analyses of upcoming studies or sanity checks on existing genomic data. Population genetics, as a field, also lacks standard benchmarks by which new tools for inference might be measured. Here we describe a new resource, stdpopsim, that attempts to rectify this situation. Stdpopsim is a community-driven open source project, which provides easy access to a growing catalog of published simulation models from a range of organisms and supports multiple simulation engine backends. This resource is available as a well-documented python library with a simple command-line interface. We share some examples demonstrating how stdpopsim can be used to systematically compare demographic inference methods, and we encourage a broader community of developers to contribute to this growing resource.

Data availability

All resources are available from https://github.com/popsim-consortium/stdpopsim

Article and author information

Author details

  1. Jeffrey R Adrion

    Department of Biology, University of Oregon, Eugene, United States
    Competing interests
    No competing interests declared.
  2. Christopher B Cole

    Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6733-633X
  3. Noah Dukler

    Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8739-8052
  4. Jared G Galloway

    Department of Biology and Institute of Ecology and Evolution, University of Oregon, Eugene, United States
    Competing interests
    No competing interests declared.
  5. Ariella L Gladstein

    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  6. Graham Gower

    Lundbeck GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6197-3872
  7. Christopher C Kyriazis

    Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Aaron P Ragsdale

    Human Genetics, McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0715-3432
  9. Georgia Tsambos

    Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7001-2275
  10. Franz Baumdicker

    Department of Mathematical Stochastics, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  11. Jedidiah Carlson

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  12. Reed A Cartwright

    The Biodesign Institute and The School of Life Sciences, Arizona State University, Tempe, United States
    Competing interests
    No competing interests declared.
  13. Arun Durvasula

    Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0631-3238
  14. Ilan Gronau

    IDC Herzliya, Herzliya, Israel
    Competing interests
    No competing interests declared.
  15. Bernard Y Kim

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  16. Patrick McKenzie

    Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  17. Philipp W Messer

    Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, United States
    Competing interests
    Philipp W Messer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8453-9377
  18. Ekaterina Noskova

    Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russian Federation
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1168-0497
  19. Diego Ortega Del Vecchyo

    International Laboratory for Human Genome Research, National Autonomous University of Mexico, Juriquilla, Mexico
    Competing interests
    No competing interests declared.
  20. Fernando Racimo

    Lundbeck GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5025-2607
  21. Travis J Struck

    Molecular and Cellular Biology, University of Arizona, Tucson, United States
    Competing interests
    No competing interests declared.
  22. Simon Gravel

    Human Genetics, McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
  23. Ryan N Gutenkunst

    Molecular and Cellular Biology, University of Arizona, Tucson, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8659-0579
  24. Kirk E Lohmueller

    Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3874-369X
  25. Peter L Ralph

    Institute of Ecology and Evolution, University of Oregon, Eugene, United States
    Competing interests
    No competing interests declared.
  26. Daniel R Schrider

    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5249-4151
  27. Adam Siepel

    Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  28. Jerome Kelleher

    Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
    For correspondence
    jerome.kelleher@bdi.ox.ac.uk
    Competing interests
    No competing interests declared.
  29. Andrew D Kern

    Institute of Ecology and Evolution, University of Oregon, Eugene, United States
    For correspondence
    adkern@uoregon.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4381-4680

Funding

National Institute of General Medical Sciences (R35GM119856)

  • Christopher C Kyriazis
  • Kirk E Lohmueller

National Institute of General Medical Sciences (R01GM117241)

  • Jeffrey R Adrion
  • Andrew D Kern

National Institute of General Medical Sciences (R01GM127348)

  • Travis J Struck
  • Ryan N Gutenkunst

National Institute of General Medical Sciences (R00HG008696)

  • Ariella L Gladstein
  • Daniel R Schrider

National Institute of General Medical Sciences (R35GM127070)

  • Noah Dukler
  • Adam Siepel

National Human Genome Research Institute (R01HG010346)

  • Noah Dukler
  • Adam Siepel

Villum Fonden (00025300)

  • Graham Gower
  • Fernando Racimo

UC MEXUS-CONACYT

  • Diego Ortega Del Vecchyo

Robertson Foundation

  • Jerome Kelleher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Adrion et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,339
    views
  • 642
    downloads
  • 128
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeffrey R Adrion
  2. Christopher B Cole
  3. Noah Dukler
  4. Jared G Galloway
  5. Ariella L Gladstein
  6. Graham Gower
  7. Christopher C Kyriazis
  8. Aaron P Ragsdale
  9. Georgia Tsambos
  10. Franz Baumdicker
  11. Jedidiah Carlson
  12. Reed A Cartwright
  13. Arun Durvasula
  14. Ilan Gronau
  15. Bernard Y Kim
  16. Patrick McKenzie
  17. Philipp W Messer
  18. Ekaterina Noskova
  19. Diego Ortega Del Vecchyo
  20. Fernando Racimo
  21. Travis J Struck
  22. Simon Gravel
  23. Ryan N Gutenkunst
  24. Kirk E Lohmueller
  25. Peter L Ralph
  26. Daniel R Schrider
  27. Adam Siepel
  28. Jerome Kelleher
  29. Andrew D Kern
(2020)
A community-maintained standard library of population genetic models
eLife 9:e54967.
https://doi.org/10.7554/eLife.54967

Share this article

https://doi.org/10.7554/eLife.54967

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.