The yeast mating-type switching endonuclease HO is a domesticated member of an unorthodox homing genetic element family

Abstract

The mating-type switching endonuclease HO plays a central role in the natural life cycle of Saccharomyces cerevisiae, but its evolutionary origin is unknown. HO is a recent addition to yeast genomes, present in only a few genera close to Saccharomyces. Here we show that HO is structurally and phylogenetically related to a family of unorthodox homing genetic elements found in Torulaspora and Lachancea yeasts. These WHO elements home into the aldolase gene FBA1, replacing its 3' end each time they integrate. They resemble inteins but they operate by a different mechanism that does not require protein splicing. We show that a WHO protein cleaves Torulaspora delbrueckii FBA1 efficiently and in an allele-specific manner, leading to DNA repair by gene conversion or NHEJ. The DNA rearrangement steps during WHO element homing are very similar to those during mating-type switching, and indicate that HO is a domesticated WHO-like element.

Data availability

Key nucleotide sequence data is provided in Supplementary File 1. New genome sequences have been deposited at NCBI. Their Bioproject numbers are in the dataset table and also in Supplementary files 1 and 2 of the manuscript.

The following data sets were generated

Article and author information

Author details

  1. Aisling Y Coughlan

    UCD Conway Institute, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  2. Lisa Lombardi

    UCD Conway Institute, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephanie Braun-Galleani

    UCD Conway Institute, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandre AR Martos

    UCD Conway Institute, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  5. Virginie Galeote

    SPO, INRAE, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Frédéric Bigey

    SPO, INRAE, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Sylvie Dequin

    SPO, INRAE, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Kevin P Byrne

    UCD Conway Institute, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  9. Kenneth H Wolfe

    UCD Conway Institute, University College Dublin, Dublin, Ireland
    For correspondence
    kenneth.wolfe@ucd.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4992-4979

Funding

Science Foundation Ireland (13/IA/1910)

  • Kenneth H Wolfe

European Research Council (789341)

  • Kenneth H Wolfe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Coughlan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,820
    views
  • 437
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aisling Y Coughlan
  2. Lisa Lombardi
  3. Stephanie Braun-Galleani
  4. Alexandre AR Martos
  5. Virginie Galeote
  6. Frédéric Bigey
  7. Sylvie Dequin
  8. Kevin P Byrne
  9. Kenneth H Wolfe
(2020)
The yeast mating-type switching endonuclease HO is a domesticated member of an unorthodox homing genetic element family
eLife 9:e55336.
https://doi.org/10.7554/eLife.55336

Share this article

https://doi.org/10.7554/eLife.55336

Further reading

    1. Evolutionary Biology
    Julia D Sigwart, Yunlong Li ... Jin Sun
    Research Article

    A major question in animal evolution is how genotypic and phenotypic changes are related, and another is when and whether ancient gene order is conserved in living clades. Chitons, the molluscan class Polyplacophora, retain a body plan and general morphology apparently little changed since the Palaeozoic. We present a comparative analysis of five reference quality genomes, including four de novo assemblies, covering all major chiton clades, and an updated phylogeny for the phylum. We constructed 20 ancient molluscan linkage groups (MLGs) and show that these are relatively conserved in bivalve karyotypes, but in chitons they are subject to re-ordering, rearrangement, fusion, or partial duplication and vary even between congeneric species. The largest number of novel fusions is in the most plesiomorphic clade Lepidopleurida, and the chitonid Liolophura japonica has a partial genome duplication, extending the occurrence of large-scale gene duplication within Mollusca. The extreme and dynamic genome rearrangements in this class stands in contrast to most other animals, demonstrating that chitons have overcome evolutionary constraints acting on other animal groups. The apparently conservative phenome of chitons belies rapid and extensive changes in genome.

    1. Evolutionary Biology
    Mauna R Dasari, Kimberly E Roche ... Elizabeth A Archie
    Research Article

    Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting ‘microbiome clock’ predicts host chronological age. Deviations from the clock’s predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual’s ‘microbiome age’ does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.