1. Chromosomes and Gene Expression
Download icon

Translation: Finding sense in the context

  1. Kim M Keeling
  2. David M Bedwell  Is a corresponding author
  1. Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, United States
  2. Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, United States
Insight
  • Cited 0
  • Views 684
  • Annotations
Cite this article as: eLife 2020;9:e55960 doi: 10.7554/eLife.55960

Abstract

Ribosomal profiling has shed new light on how ribosomes can ignore stop codons in messenger RNA.

Main text

When a ribosome is translating a molecule of messenger RNA (mRNA) to produce a protein, it stops when it encounters a triplet of nucleotides called a termination codon. Ribosomes recognize three different termination codons – UAG, UAA and UGA – but a genetic event called a nonsense mutation can change a codon that normally codes for an amino acid – such as UAU, which codes for tyrosine – into a codon that stops translation prematurely. This results in the production of a truncated protein that does not work properly. Indeed, nonsense mutations cause a wide range of genetic conditions in millions of people worldwide, representing as much as 11% of all disease-associated gene lesions (Mort et al., 2008).

One way to treat the conditions caused by nonsense mutations would be to target premature termination events (Lee and Dougherty, 2012; Keeling et al., 2014; Dabrowski et al., 2018). For example, small molecules such as aminoglycoside antibiotics can help ribosomes to ignore premature termination codons and produce some full-length working proteins, an event called ‘readthrough’. However, aminoglycosides may also help ribosomes to readthrough normal termination codons: this can produce longer-than-normal proteins that are harmful to cells.

Now, in eLife, Jamie Wangen and Rachel Green of Johns Hopkins University School of Medicine report new insights into the way that aminoglycosides suppress termination (Wangen and Green, 2020; Figure 1). To do so, they harnessed and adapted a method known as ribosomal profiling, which reveals all the mRNAs that are being translated at a given time in a cell. In particular, the technique can highlight where ribosomes start and stop translation (Figure 1).

Using ribosomal profiling to assess the efficiency of translation termination.

At any given time, a number of ribosomes (grey ovals) will be attached to messenger RNA molecules at different positions. Ribosomal profiling is a technique that can help to locate ribosomes on the mRNA they are translating at the scale of the genome. First, each ribosome (and the region of mRNA it is attached to) is isolated. These segments are then treated with nucleases, releasing the RNA sequences the ribosomes were bound to. These are then purified and sequenced. During efficient termination (left), most of the ribosomes are between the start codon (green) and the stop codon (red), with the majority accumulating at the stop codon (graph on the bottom left), where translation stops. During inefficient termination (right), for example under the influence of small molecules such as G418, ribosomes can ‘readthrough’ the termination codon and carry on translating downstream (graph on the bottom right).

First, Wangen and Green used ribosomal profiling to examine translation in human cells treated with the aminoglycoside G418. Cells that were exposed to G418 had fewer ribosomes attached to normal termination codons; more ribosomes, however, were bound to regions of mRNA downstream of these termination codons, indicating that readthrough had occurred (thus allowing ribosomes to continue to translate past the normal stop points). Together, these findings indicate that G418 helps ribosomes to bypass normal termination codons; other results also suggest that the drug broadly interferes with other steps of the translation process.

Second, ribosomal profiling was used to examine how the mRNA sequence around a termination codon influences readthrough: this approach confirmed and built upon results from a number of previous studies (Martin, 1994; Phillips-Jones et al., 1995; Manuvakhova et al., 2000; Cassan and Rousset, 2001; Namy et al., 2001). Whether the termination codon was UAG, UAA or UGA, the identity of the two nucleotides directly downstream of these sequences had the greatest impact on readthrough. In addition, if neighboring sequences were rich in adenine and uridine, readthrough became more frequent.

Third, in cells treated with G418, readthrough events happened less often for normal termination codons than they did for other, downstream termination codons (which are not normally read by ribosomes). This indicates that normal termination codons have evolved safeguards to protect themselves from readthrough. It also suggests it may be possible to target premature termination codons – which may be more vulnerable since they have not been through a similar selection process – without disrupting accurate termination events.

Fourth, Wangen and Green explored the biological consequences of G418 inducing readthrough of normal termination codons. The majority of mRNAs were only modestly affected, but certain genes were more sensitive to the translation events induced by the drug – namely, the histone, selenoprotein, and S-adenosylmethionine decarboxylase genes.

Multiple genetic and biochemical studies have investigated the mechanisms of nonsense suppression, but only for a few transcripts at a time. The work by Wangen and Green, on the other hand, highlights how ribosomal profiling can confirm these findings at a genomic level. This confirmation is important when considering how to suppress premature termination codons for therapeutic purposes. By adapting ribosomal profiling to explore translation termination, Wangen and Green have created an important tool to investigate nonsense suppression in normal circumstances and under the influence of aminoglycosides. The method could also be used to examine how other readthrough agents act on premature and normal termination codons, as well as on global gene expression. This work could potentially help to identify new, safe and effective molecules that could be developed for clinical use.

References

Article and author information

Author details

  1. Kim M Keeling

    Kim M Keeling is in the Department of Biochemistry and Molecular Genetics and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0471-5858
  2. David M Bedwell

    David M Bedwell is in the Department of Biochemistry and Molecular Genetics and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, United States

    For correspondence
    dbedwell@uab.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6605-818X

Publication history

  1. Version of Record published: March 23, 2020 (version 1)

Copyright

© 2020, Keeling and Bedwell

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 684
    Page views
  • 85
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Gemma LM Fisher et al.
    Research Article Updated

    Structural Maintenance of Chromosomes (SMC) complexes have ubiquitous roles in compacting DNA linearly, thereby promoting chromosome organization-segregation. Interaction between the Escherichia coli SMC complex, MukBEF, and matS-bound MatP in the chromosome replication termination region, ter, results in depletion of MukBEF from ter, a process essential for efficient daughter chromosome individualization and for preferential association of MukBEF with the replication origin region. Chromosome-associated MukBEF complexes also interact with topoisomerase IV (ParC2E2), so that their chromosome distribution mirrors that of MukBEF. We demonstrate that MatP and ParC have an overlapping binding interface on the MukB hinge, leading to their mutually exclusive binding, which occurs with the same dimer to dimer stoichiometry. Furthermore, we show that matS DNA competes with the MukB hinge for MatP binding. Cells expressing MukBEF complexes that are mutated at the ParC/MatP binding interface are impaired in ParC binding and have a mild defect in MukBEF function. These data highlight competitive binding as a means of globally regulating MukBEF-topoisomerase IV activity in space and time.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Benoit Roch et al.
    Research Article Updated

    We developed an Xrcc4M61R separation of function mouse line to overcome the embryonic lethality of Xrcc4-deficient mice. XRCC4M61R protein does not interact with Xlf, thus obliterating XRCC4-Xlf filament formation while preserving the ability to stabilize DNA ligase IV. X4M61R mice, which are DNA repair deficient, phenocopy the Nhej1-/- (known as Xlf -/-) setting with a minor impact on the development of the adaptive immune system. The core non-homologous end-joining (NHEJ) DNA repair factor XRCC4 is therefore not mandatory for V(D)J recombination aside from its role in stabilizing DNA ligase IV. In contrast, Xrcc4M61R mice crossed on Paxx-/-, Nhej1-/-, or Atm-/- backgrounds are severely immunocompromised, owing to aborted V(D)J recombination as in Xlf-Paxx and Xlf-Atm double Knock Out (DKO) settings. Furthermore, massive apoptosis of post-mitotic neurons causes embryonic lethality of Xrcc4M61R -Nhej1-/- double mutants. These in vivo results reveal new functional interplays between XRCC4 and PAXX, ATM and Xlf in mouse development and provide new insights into the understanding of the clinical manifestations of human XRCC4-deficient condition, in particular its absence of immune deficiency.