1. Neuroscience
  2. Physics of Living Systems
Download icon

Random access parallel microscopy

  1. Mishal Ashraf
  2. Mohanan Sharika
  3. Byu Ri Sim
  4. Anthony Tam
  5. Kiamehr Rahemipour
  6. Denis Brousseau
  7. Simon Thibault
  8. Alexander D. Corbett  Is a corresponding author
  9. Gil Bub  Is a corresponding author
  1. McGill University, Canada
  2. University of Exeter, United Kingdom
  3. Université Laval, Canada
Tools and Resources
  • Cited 3
  • Views 3,098
  • Annotations
Cite this article as: eLife 2021;10:e56426 doi: 10.7554/eLife.56426

Abstract

We introduce a random access parallel (RAP) imaging modality that uses a novel design inspired by a Newtonian telescope to image multiple spatially separated samples without moving parts or robotics. This scheme enables near simultaneous image capture of multiple petri dishes and random-access imaging with sub-millisecond switching times at the full resolution of the camera. This enables the RAP system to capture long duration records from different samples in parallel, which is not possible using conventional automated microscopes. The system is demonstrated by continuously imaging multiple cardiac monolayer and Caenorhabditis elegans (C. elegans) preparations.

Data availability

All data generated during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Mishal Ashraf

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Mohanan Sharika

    Physics and Astronomy, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Byu Ri Sim

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Anthony Tam

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Kiamehr Rahemipour

    Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Denis Brousseau

    Department of Physics, Physical Engineering and Optics, Université Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Simon Thibault

    Department of Physics, Physical Engineering and Optics, Université Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexander D. Corbett

    Physics and Astronomy, University of Exeter, Exeter, United Kingdom
    For correspondence
    A.Corbett@exeter.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1645-5475
  9. Gil Bub

    Physiology, McGill University, Montreal, Canada
    For correspondence
    gilbub@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5304-0036

Funding

National Science and Engineering Research Council of Canada (RGPIN-2018-05346)

  • Gil Bub

National Science and Engineering Research Council of Canada (RGPIN-2016-05962)

  • Simon Thibault

Funders support enabled acquisition of equipment used in this study and also funded summer student stipends for undergraduate authors.

Reviewing Editor

  1. Jonathan Ewbank, Aix Marseille Université, INSERM, CNRS, France

Publication history

  1. Received: February 27, 2020
  2. Accepted: January 11, 2021
  3. Accepted Manuscript published: January 12, 2021 (version 1)
  4. Accepted Manuscript updated: January 15, 2021 (version 2)
  5. Version of Record published: January 28, 2021 (version 3)

Copyright

© 2021, Ashraf et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,098
    Page views
  • 306
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Andrea Loreto et al.
    Research Article

    Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the nicotinamide adenine dinucleotide (NAD)-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet know is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.

    1. Neuroscience
    Simon A Sharples, Gareth B Miles
    Research Article Updated

    The size principle underlies the orderly recruitment of motor units; however, motoneuron size is a poor predictor of recruitment amongst functionally defined motoneuron subtypes. Whilst intrinsic properties are key regulators of motoneuron recruitment, the underlying currents involved are not well defined. Whole-cell patch-clamp electrophysiology was deployed to study intrinsic properties, and the underlying currents, that contribute to the differential activation of delayed and immediate firing motoneuron subtypes. Motoneurons were studied during the first three postnatal weeks in mice to identify key properties that contribute to rheobase and may be important to establish orderly recruitment. We find that delayed and immediate firing motoneurons are functionally homogeneous during the first postnatal week and are activated based on size, irrespective of subtype. The rheobase of motoneuron subtypes becomes staggered during the second postnatal week, which coincides with the differential maturation of passive and active properties, particularly persistent inward currents. Rheobase of delayed firing motoneurons increases further in the third postnatal week due to the development of a prominent resting hyperpolarization-activated inward current. Our results suggest that motoneuron recruitment is multifactorial, with recruitment order established during postnatal development through the differential maturation of passive properties and sequential integration of persistent and hyperpolarization-activated inward currents.