Divergent sensory investment mirrors potential speciation via niche partitioning across Drosophila

  1. Ian W Keesey  Is a corresponding author
  2. Veit Grabe
  3. Markus Knaden  Is a corresponding author
  4. Bill S Hansson  Is a corresponding author
  1. Max Planck Institute for Chemical Ecology, Germany

Abstract

The examination of phylogenetic and phenotypic characteristics of the nervous system, such as behavior and neuroanatomy, can be utilized as a means to assess speciation. Recent studies have proposed a fundamental tradeoff between two sensory organs, the eye and the antenna. However, the identification of ecological mechanisms for this observed tradeoff have not been firmly established. Our current study examines several monophyletic species within the obscura group, and asserts that despite their close relatedness and overlapping ecology, they deviate strongly in both visual and olfactory investment. We contend that both courtship and microhabitat preferences support the observed inverse variation in these sensory traits. Here, this variation in visual and olfactory investment seems to provide relaxed competition, a process by which similar species can use a shared environment differently and in ways that help them coexist. Moreover, that behavioral separation according to light gradients occurs first, and subsequently, courtship deviations arise.

Data availability

All data supporting the findings of this study, including methodology, display examples, raw confocal images and z-stack scans, statistical assessments, courtship videos, as well as other supplementary materials are all available with the online version of this publication. An additional, online data depository also contains raw data from this publication, and this material can be accessed via EDMOND, the Open Access Data Repository of the Max Planck Society (MPG):https://dx.doi.org/10.17617/3.3v

The following data sets were generated

Article and author information

Author details

  1. Ian W Keesey

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    For correspondence
    ikeesey@ice.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3339-7249
  2. Veit Grabe

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0736-2771
  3. Markus Knaden

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    For correspondence
    mknaden@ice.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6710-1071
  4. Bill S Hansson

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    For correspondence
    hansson@ice.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4811-1223

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Ian W Keesey
  • Veit Grabe
  • Markus Knaden
  • Bill S Hansson

The funding organization had no role in the study design, data collection, interpretation, nor the decision to submit the work for publication. The authors declare no competing interests.

Copyright

© 2020, Keesey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,805
    views
  • 465
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ian W Keesey
  2. Veit Grabe
  3. Markus Knaden
  4. Bill S Hansson
(2020)
Divergent sensory investment mirrors potential speciation via niche partitioning across Drosophila
eLife 9:e57008.
https://doi.org/10.7554/eLife.57008

Share this article

https://doi.org/10.7554/eLife.57008

Further reading

    1. Evolutionary Biology
    Tristan Roget, Claire Macmurray ... Michael Rera
    Research Article

    Signs of ageing become apparent only late in life, after organismal development is finalized. Ageing, most notably, decreases an individual’s fitness. As such, it is most commonly perceived as a non-adaptive force of evolution and considered a by-product of natural selection. Building upon the evolutionarily conserved age-related Smurf phenotype, we propose a simple mathematical life-history trait model in which an organism is characterized by two core abilities: reproduction and homeostasis. Through the simulation of this model, we observe (1) the convergence of fertility’s end with the onset of senescence, (2) the relative success of ageing populations, as compared to non-ageing populations, and (3) the enhanced evolvability (i.e. the generation of genetic variability) of ageing populations. In addition, we formally demonstrate the mathematical convergence observed in (1). We thus theorize that mechanisms that link the timing of fertility and ageing have been selected and fixed over evolutionary history, which, in turn, explains why ageing populations are more evolvable and therefore more successful. Broadly speaking, our work suggests that ageing is an adaptive force of evolution.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Philipp H Schiffer, Paschalis Natsidis ... Maximilian J Telford
    Research Article Updated

    The evolutionary origins of Bilateria remain enigmatic. One of the more enduring proposals highlights similarities between a cnidarian-like planula larva and simple acoel-like flatworms. This idea is based in part on the view of the Xenacoelomorpha as an outgroup to all other bilaterians which are themselves designated the Nephrozoa (protostomes and deuterostomes). Genome data can provide important comparative data and help understand the evolution and biology of enigmatic species better. Here, we assemble and analyze the genome of the simple, marine xenacoelomorph Xenoturbella bocki, a key species for our understanding of early bilaterian evolution. Our highly contiguous genome assembly of X. bocki has a size of ~111 Mbp in 18 chromosome-like scaffolds, with repeat content and intron, exon, and intergenic space comparable to other bilaterian invertebrates. We find X. bocki to have a similar number of genes to other bilaterians and to have retained ancestral metazoan synteny. Key bilaterian signaling pathways are also largely complete and most bilaterian miRNAs are present. Overall, we conclude that X. bocki has a complex genome typical of bilaterians, which does not reflect the apparent simplicity of its body plan that has been so important to proposals that the Xenacoelomorpha are the simple sister group of the rest of the Bilateria.