Abstract

The transport of charged molecules across biological membranes faces the dual problem of accommodating charges in a highly hydrophobic environment while maintaining selective substrate translocation. This has been the subject of a particular controversy for the exchange of ammonium across cellular membranes, an essential process in all domains of life. Ammonium transport is mediated by the ubiquitous Amt/Mep/Rh transporters that includes the human Rhesus factors. Here, using a combination of electrophysiology, yeast functional complementation and extended molecular dynamics simulations, we reveal a unique two-lane pathway for electrogenic NH4+ transport in two archetypal members of the family, the transporters AmtB from Escherichia coli and Rh50 from Nitrosomonas europaea. The pathway underpins a mechanism by which charged H+ and neutral NH3 are carried separately across the membrane after NH4+ deprotonation. This mechanism defines a new principle of achieving transport selectivity against competing ions in a biological transport process.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-5 and Table 2.

Article and author information

Author details

  1. Gordon Williamson

    Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Giulia Tamburrino

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Adriana Bizior

    Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Mélanie Boeckstaens

    Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1629-7403
  5. Gaëtan Dias Mirandela

    Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5871-6288
  6. Marcus Bage

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrei Pisliakov

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Callum M Ives

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0511-1220
  9. Eilidh Terras

    Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Paul A Hoskisson

    Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Anna-Maria Marini

    Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  12. Ulrich Zachariae

    School of Life Sciences / School of Science and Engineering, University of Dundee, Dundee, United Kingdom
    For correspondence
    u.zachariae@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  13. Arnaud Javelle

    Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
    For correspondence
    arnaud.javelle@strath.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3611-5737

Funding

Tenovus (S17-07)

  • Arnaud Javelle

Scottish Universities Physics Alliance (NA)

  • Ulrich Zachariae

Natural Environment Research Council (NE/M001415/1)

  • Paul A Hoskisson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Williamson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,948
    views
  • 377
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gordon Williamson
  2. Giulia Tamburrino
  3. Adriana Bizior
  4. Mélanie Boeckstaens
  5. Gaëtan Dias Mirandela
  6. Marcus Bage
  7. Andrei Pisliakov
  8. Callum M Ives
  9. Eilidh Terras
  10. Paul A Hoskisson
  11. Anna-Maria Marini
  12. Ulrich Zachariae
  13. Arnaud Javelle
(2020)
A two-lane mechanism for selective biological ammonium transport
eLife 9:e57183.
https://doi.org/10.7554/eLife.57183

Share this article

https://doi.org/10.7554/eLife.57183

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Federico A Vignale, Andrea Hernandez Garcia ... Adrian G Turjanski
    Research Article

    Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.