Large domains of heterochromatin direct the formation of short mitotic chromosome loops

  1. Maximilian H. Fitz-James
  2. Pin Tong
  3. Alison L Pidoux
  4. Hakan Ozadam
  5. Liyan Yang
  6. Sharon A. White
  7. Job Dekker  Is a corresponding author
  8. Robin Allshire  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. Wellcome Trust Centre for Cell Biology, United Kingdom
  3. University of Massachusetts Medical School, United States

Abstract

During mitosis chromosomes reorganise into highly compact, rod-shaped forms, thought to consist of consecutive chromatin loops around a central protein scaffold. Condensin complexes are involved in chromatin compaction, but the contribution of other chromatin proteins, DNA sequence and histone modifications is less understood. A large region of fission yeast DNA inserted into a mouse chromosome was previously observed to adopt a mitotic organisation distinct from that of surrounding mouse DNA. Here we show that a similar distinct structure is common to a large subset of insertion events in both mouse and human cells and is coincident with the presence of high levels of heterochromatic H3 lysine 9 trimethylation (H3K9me3). Hi-C and microscopy indicate that the heterochromatinised fission yeast DNA is organised into smaller chromatin loops than flanking euchromatic mouse chromatin. We conclude that heterochromatin alters chromatin loop size, thus contributing to the distinct appearance of heterochromatin on mitotic chromosomes.

Data availability

DNA sequencing and nanopore data were uploaded to the Sequence Read Archive with project ID PRJNA629899. Hi-C data was uploaded to GEO with accession ID GSE149677.

The following data sets were generated

Article and author information

Author details

  1. Maximilian H. Fitz-James

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6084-5887
  2. Pin Tong

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  3. Alison L Pidoux

    Institute of Cell Biology, Wellcome Trust Centre for Cell Biology, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  4. Hakan Ozadam

    Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  5. Liyan Yang

    Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  6. Sharon A. White

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  7. Job Dekker

    Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    job.dekker@umassmed.edu
    Competing interests
    Job Dekker, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5631-0698
  8. Robin Allshire

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    robin.allshire@ed.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8005-3625

Funding

Wellcome Trust (Wellcome 4 year PhD studentship,102336/Z/13/Z)

  • Maximilian H. Fitz-James

Wellcome Trust (Principal Research Fellowship,095021)

  • Robin Allshire

Wellcome Trust (Principal Research Fellowship,200885)

  • Robin Allshire

Wellcome Trust (Wellcome Centre for Cell Biology Core grant,203149)

  • Maximilian H. Fitz-James
  • Pin Tong
  • Alison L Pidoux
  • Sharon A. White
  • Robin Allshire

National Human Genome Research Institute (HG003143)

  • Hakan Ozadam
  • Liyan Yang
  • Job Dekker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gary H Karpen, University of California, Berkeley, United States

Version history

  1. Received: March 24, 2020
  2. Accepted: September 10, 2020
  3. Accepted Manuscript published: September 11, 2020 (version 1)
  4. Accepted Manuscript updated: September 14, 2020 (version 2)
  5. Version of Record published: September 24, 2020 (version 3)

Copyright

© 2020, Fitz-James et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,845
    Page views
  • 380
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maximilian H. Fitz-James
  2. Pin Tong
  3. Alison L Pidoux
  4. Hakan Ozadam
  5. Liyan Yang
  6. Sharon A. White
  7. Job Dekker
  8. Robin Allshire
(2020)
Large domains of heterochromatin direct the formation of short mitotic chromosome loops
eLife 9:e57212.
https://doi.org/10.7554/eLife.57212

Share this article

https://doi.org/10.7554/eLife.57212

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.