Large domains of heterochromatin direct the formation of short mitotic chromosome loops

  1. Maximilian H Fitz-James
  2. Pin Tong
  3. Alison L Pidoux
  4. Hakan Ozadam
  5. Liyan Yang
  6. Sharon A White
  7. Job Dekker
  8. Robin Allshire  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. University of Massachusetts Medical School, United States

Abstract

During mitosis chromosomes reorganise into highly compact, rod-shaped forms, thought to consist of consecutive chromatin loops around a central protein scaffold. Condensin complexes are involved in chromatin compaction, but the contribution of other chromatin proteins, DNA sequence and histone modifications is less understood. A large region of fission yeast DNA inserted into a mouse chromosome was previously observed to adopt a mitotic organisation distinct from that of surrounding mouse DNA. Here we show that a similar distinct structure is common to a large subset of insertion events in both mouse and human cells and is coincident with the presence of high levels of heterochromatic H3 lysine 9 trimethylation (H3K9me3). Hi-C and microscopy indicate that the heterochromatinised fission yeast DNA is organised into smaller chromatin loops than flanking euchromatic mouse chromatin. We conclude that heterochromatin alters chromatin loop size, thus contributing to the distinct appearance of heterochromatin on mitotic chromosomes.

Data availability

DNA sequencing and nanopore data were uploaded to the Sequence Read Archive with project ID PRJNA629899. Hi-C data was uploaded to GEO with accession ID GSE149677.

The following data sets were generated

Article and author information

Author details

  1. Maximilian H Fitz-James

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6084-5887
  2. Pin Tong

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  3. Alison L Pidoux

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  4. Hakan Ozadam

    Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  5. Liyan Yang

    Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  6. Sharon A White

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  7. Job Dekker

    Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    Job Dekker, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5631-0698
  8. Robin Allshire

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    robin.allshire@ed.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8005-3625

Funding

Wellcome Trust (Wellcome 4 year PhD studentship,102336/Z/13/Z)

  • Maximilian H Fitz-James

Wellcome Trust (Principal Research Fellowship,095021)

  • Robin Allshire

Wellcome Trust (Principal Research Fellowship,200885)

  • Robin Allshire

Wellcome Trust (Wellcome Centre for Cell Biology Core grant,203149)

  • Maximilian H Fitz-James
  • Pin Tong
  • Alison L Pidoux
  • Sharon A White
  • Robin Allshire

National Human Genome Research Institute (HG003143)

  • Hakan Ozadam
  • Liyan Yang
  • Job Dekker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gary H Karpen, University of California, Berkeley, United States

Version history

  1. Received: March 24, 2020
  2. Accepted: September 10, 2020
  3. Accepted Manuscript published: September 11, 2020 (version 1)
  4. Accepted Manuscript updated: September 14, 2020 (version 2)
  5. Version of Record published: September 24, 2020 (version 3)

Copyright

© 2020, Fitz-James et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,864
    views
  • 382
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maximilian H Fitz-James
  2. Pin Tong
  3. Alison L Pidoux
  4. Hakan Ozadam
  5. Liyan Yang
  6. Sharon A White
  7. Job Dekker
  8. Robin Allshire
(2020)
Large domains of heterochromatin direct the formation of short mitotic chromosome loops
eLife 9:e57212.
https://doi.org/10.7554/eLife.57212

Share this article

https://doi.org/10.7554/eLife.57212

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.