1. Medicine
Download icon

Potential harmful effects of discontinuing ACE-inhibitors and ARBs in COVID-19 patients

  1. Gian Paolo Rossi  Is a corresponding author
  2. Viola Sanga  Is a corresponding author
  3. Matthias Barton  Is a corresponding author
  1. University of Padova, Italy
  2. University of Zurich, Switzerland
Short Report
  • Cited 36
  • Views 7,994
  • Annotations
Cite this article as: eLife 2020;9:e57278 doi: 10.7554/eLife.57278


The discovery that SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) binds to the angiotensin converting enzyme (ACE)-2, which is highly expressed in the lower airways, explained why SARS-CoV-2 causes acute respiratory distress syndrome (ARDS) and respiratory failure. After this, news spread that ACEis and ARBs would be harmful in SARS-CoV-2-infected subjects. To the contrary, compelling evidence exists that the ACE-1/angiotensin(Ang)II/ATR-1 pathway is involved in SARS-CoV-2-induced ARDS, while the ACE-2/Ang(1-7)/ATR2/MasR pathway counteracts the harmful actions of AngII in the lung. A reduced ACE-1/ACE-2 ratio is, in fact, a feature of ARDS that can be rescued by human recombinant ACE-2 and Ang(1-7) administration, thus preventing SARS-CoV-2-induced damage to the lung. Based on the current clinical evidence treatment with ACE-inhibitors I (ACEis) or angiotensin receptor blockers (ARBs) continues to provide cardiovascular and renal protection in patients diagnosed with COVID-19. Discontinuing these medications may therefore be potentially harmful in this patient population.

Article and author information

Author details

  1. Gian Paolo Rossi

    Department of Medicine-DIMED - Hypertension Unit, University of Padova, Padova, Italy
    For correspondence
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7963-0931
  2. Viola Sanga

    Department of Medicine-DIMED - Hypertension Unit, University of Padova, Padova, Italy
    For correspondence
    Competing interests
    No competing interests declared.
  3. Matthias Barton

    University of Zurich, Zurich, Switzerland
    For correspondence
    Competing interests
    Matthias Barton, Senior Editor, eLife.


The authors declare that there was no funding for this work.

Reviewing Editor

  1. Mone Zaidi, Icahn School of Medicine at Mount Sinai, United States

Publication history

  1. Received: March 26, 2020
  2. Accepted: April 3, 2020
  3. Accepted Manuscript published: April 6, 2020 (version 1)
  4. Accepted Manuscript updated: April 8, 2020 (version 2)
  5. Accepted Manuscript updated: April 9, 2020 (version 3)
  6. Accepted Manuscript updated: April 15, 2020 (version 4)
  7. Version of Record published: May 4, 2020 (version 5)
  8. Version of Record updated: May 6, 2020 (version 6)


© 2020, Rossi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 7,994
    Page views
  • 1,408
  • 36

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Medicine
    Peristera-Ioanna Petropoulou et al.
    Research Article

    In the mouse, the osteoblast-derived hormone Lipocalin-2 (LCN2) suppresses food intake and acts as a satiety signal. We show here that meal challenges increase serum LCN2 levels in persons with normal or overweight, but not in individuals with obesity. Postprandial LCN2 serum levels correlate inversely with hunger sensation in challenged subjects. We further show through brain PET scans of monkeys injected with radiolabeled recombinant human LCN2 (rh-LCN2) and autoradiography in baboon, macaque, and human brain sections, that LCN2 crosses the blood-brain barrier and localizes to the hypothalamus in primates. In addition, daily treatment of lean monkeys with rh-LCN2 decreases food intake by 21%, without overt side effects. These studies demonstrate the biology of LCN2 as a satiety factor and indicator and anorexigenic signal in primates. Failure to stimulate postprandial LCN2 in individuals with obesity may contribute to metabolic dysregulation, suggesting that LCN2 may be a novel target for obesity treatment.

    1. Immunology and Inflammation
    2. Medicine
    Shubhanshi Trivedi et al.
    Research Article Updated

    Sepsis is a systemic inflammatory response to infection and a leading cause of death. Mucosal-associated invariant T (MAIT) cells are innate-like T cells enriched in mucosal tissues that recognize bacterial ligands. We investigated MAIT cells during clinical and experimental sepsis, and their contribution to host responses. In experimental sepsis, MAIT-deficient mice had significantly increased mortality and bacterial load, and reduced tissue-specific cytokine responses. MAIT cells of WT mice expressed lower levels of IFN-γ and IL-17a during sepsis compared to sham surgery, changes not seen in non-MAIT T cells. MAIT cells of patients at sepsis presentation were significantly reduced in frequency compared to healthy donors, and were more activated, with decreased IFN-γ production, compared to both healthy donors and paired 90-day samples. Our data suggest that MAIT cells are highly activated and become dysfunctional during clinical sepsis, and contribute to tissue-specific cytokine responses that are protective against mortality during experimental sepsis.