Potential harmful effects of discontinuing ACE-inhibitors and ARBs in COVID-19 patients
Abstract
The discovery that SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) binds to the angiotensin converting enzyme (ACE)-2, which is highly expressed in the lower airways, explained why SARS-CoV-2 causes acute respiratory distress syndrome (ARDS) and respiratory failure. After this, news spread that ACEis and ARBs would be harmful in SARS-CoV-2-infected subjects. To the contrary, compelling evidence exists that the ACE-1/angiotensin(Ang)II/ATR-1 pathway is involved in SARS-CoV-2-induced ARDS, while the ACE-2/Ang(1-7)/ATR2/MasR pathway counteracts the harmful actions of AngII in the lung. A reduced ACE-1/ACE-2 ratio is, in fact, a feature of ARDS that can be rescued by human recombinant ACE-2 and Ang(1-7) administration, thus preventing SARS-CoV-2-induced damage to the lung. Based on the current clinical evidence treatment with ACE-inhibitors I (ACEis) or angiotensin receptor blockers (ARBs) continues to provide cardiovascular and renal protection in patients diagnosed with COVID-19. Discontinuing these medications may therefore be potentially harmful in this patient population.
Data availability
N/A
Article and author information
Author details
Funding
The authors declare that there was no funding for this work.
Reviewing Editor
- Mone Zaidi, Icahn School of Medicine at Mount Sinai, United States
Publication history
- Received: March 26, 2020
- Accepted: April 3, 2020
- Accepted Manuscript published: April 6, 2020 (version 1)
- Accepted Manuscript updated: April 8, 2020 (version 2)
- Accepted Manuscript updated: April 9, 2020 (version 3)
- Accepted Manuscript updated: April 15, 2020 (version 4)
- Version of Record published: May 4, 2020 (version 5)
- Version of Record updated: May 6, 2020 (version 6)
Copyright
© 2020, Rossi et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 10,840
- Page views
-
- 1,612
- Downloads
-
- 98
- Citations
Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Medicine
Adaptive therapy is a dynamic cancer treatment protocol that updates (or ‘adapts’) treatment decisions in anticipation of evolving tumor dynamics. This broad term encompasses many possible dynamic treatment protocols of patient-specific dose modulation or dose timing. Adaptive therapy maintains high levels of tumor burden to benefit from the competitive suppression of treatment-sensitive subpopulations on treatment-resistant subpopulations. This evolution-based approach to cancer treatment has been integrated into several ongoing or planned clinical trials, including treatment of metastatic castrate resistant prostate cancer, ovarian cancer, and BRAF-mutant melanoma. In the previous few decades, experimental and clinical investigation of adaptive therapy has progressed synergistically with mathematical and computational modeling. In this work, we discuss 11 open questions in cancer adaptive therapy mathematical modeling. The questions are split into three sections: (1) integrating the appropriate components into mathematical models (2) design and validation of dosing protocols, and (3) challenges and opportunities in clinical translation.
-
- Biochemistry and Chemical Biology
- Medicine
Mitochondrial dysfunction caused by aberrant Complex I assembly and reduced activity of the electron transport chain is pathogenic in many genetic and age-related diseases. Mice missing the Complex I subunit NADH dehydrogenase [ubiquinone] iron-sulfur protein 4 (NDUFS4) are a leading mammalian model of severe mitochondrial disease that exhibit many characteristic symptoms of Leigh Syndrome including oxidative stress, neuroinflammation, brain lesions, and premature death. NDUFS4 knockout mice have decreased expression of nearly every Complex I subunit. As Complex I normally contains at least 8 iron-sulfur clusters and more than 25 iron atoms, we asked whether a deficiency of Complex I may lead to iron perturbations, thereby accelerating disease progression. Consistent with this, iron supplementation accelerates symptoms of brain degeneration in these mice, while iron restriction delays the onset of these symptoms, reduces neuroinflammation, and increases survival. NDUFS4 knockout mice display signs of iron overload in the liver including increased expression of hepcidin and show changes in iron-responsive element-regulated proteins consistent with increased cellular iron that were prevented by iron restriction. These results suggest that perturbed iron homeostasis may contribute to pathology in Leigh Syndrome and possibly other mitochondrial disorders.