Potential harmful effects of discontinuing ACE-inhibitors and ARBs in COVID-19 patients

  1. Gian Paolo Rossi  Is a corresponding author
  2. Viola Sanga  Is a corresponding author
  3. Matthias Barton  Is a corresponding author
  1. University of Padova, Italy
  2. University of Zurich, Switzerland

Abstract

The discovery that SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) RNA binds to the angiotensin converting enzyme (ACE)-2, which is highly expressed in the lower airways, explained why SARS-CoV-2 causes acute respiratory distress syndrome (ARDS) and respiratory failure. After this, news spread that ACEis and ARBs would be harmful in SARS-CoV-2-infected subjects. To the contrary, compelling evidence exists that the ACE-1/angiotensin(Ang)II/ATR-1 pathway is involved in SARS-CoV-2-induced ARDS, while the ACE-2/Ang(1-7)/ATR2/MasR pathway counteracts the harmful actions of AngII in the lung. A reduced ACE-1/ACE-2 ratio is, in fact, a feature of ARDS that can be rescued by human recombinant ACE-2 and Ang(1-7) administration, thus preventing SARS-CoV-2-induced damage to the lung. Based on the current clinical evidence treatment with ACE-inhibitors I (ACEis) or angiotensin receptor blockers (ARBs) continues to provide cardiovascular and renal protection in patients diagnosed with COVID-19. Discontinuing these medications may therefore be potentially harmful in this patient population.

Data availability

N/A

Article and author information

Author details

  1. Gian Paolo Rossi

    Department of Medicine-DIMED - Hypertension Unit, University of Padova, Padova, Italy
    For correspondence
    gianpaolo.rossi@unipd.it
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7963-0931
  2. Viola Sanga

    Department of Medicine-DIMED - Hypertension Unit, University of Padova, Padova, Italy
    For correspondence
    sangaviola.md@gmail.com
    Competing interests
    No competing interests declared.
  3. Matthias Barton

    University of Zurich, Zurich, Switzerland
    For correspondence
    barton@access.uzh.ch
    Competing interests
    Matthias Barton, Senior Editor, eLife.

Funding

The authors declare that there was no funding for this work.

Reviewing Editor

  1. Mone Zaidi, Icahn School of Medicine at Mount Sinai, United States

Version history

  1. Received: March 26, 2020
  2. Accepted: April 3, 2020
  3. Accepted Manuscript published: April 6, 2020 (version 1)
  4. Accepted Manuscript updated: April 8, 2020 (version 2)
  5. Accepted Manuscript updated: April 9, 2020 (version 3)
  6. Accepted Manuscript updated: April 15, 2020 (version 4)
  7. Version of Record published: May 4, 2020 (version 5)
  8. Version of Record updated: May 6, 2020 (version 6)

Copyright

© 2020, Rossi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,168
    views
  • 1,627
    downloads
  • 115
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gian Paolo Rossi
  2. Viola Sanga
  3. Matthias Barton
(2020)
Potential harmful effects of discontinuing ACE-inhibitors and ARBs in COVID-19 patients
eLife 9:e57278.
https://doi.org/10.7554/eLife.57278

Share this article

https://doi.org/10.7554/eLife.57278

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Medicine
    Christin Krause, Jan H Britsemmer ... Henriette Kirchner
    Research Article

    Background:

    The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in individual studies; however, an unbiased genome-wide approach to map T2D induced changes in the miRNAs landscape in human liver samples, and a subsequent robust identification and validation of target genes are still missing.

    Methods:

    Liver biopsies from age- and gender-matched obese individuals with (n=20) or without (n=20) T2D were used for microRNA microarray analysis. The candidate microRNA and target genes were validated in 85 human liver samples, and subsequently mechanistically characterized in hepatic cells as well as by dietary interventions and hepatic overexpression in mice.

    Results:

    Here, we present the human hepatic microRNA transcriptome of type 2 diabetes in liver biopsies and use a novel seed prediction tool to robustly identify microRNA target genes, which were then validated in a unique cohort of 85 human livers. Subsequent mouse studies identified a distinct signature of T2D-associated miRNAs, partly conserved in both species. Of those, human-murine miR-182–5 p was the most associated with whole-body glucose homeostasis and hepatic lipid metabolism. Its target gene LRP6 was consistently lower expressed in livers of obese T2D humans and mice as well as under conditions of miR-182–5 p overexpression. Weight loss in obese mice decreased hepatic miR-182–5 p and restored Lrp6 expression and other miR-182–5 p target genes. Hepatic overexpression of miR-182–5 p in mice rapidly decreased LRP6 protein levels and increased liver triglycerides and fasting insulin under obesogenic conditions after only seven days.

    Conclusions:

    By mapping the hepatic miRNA-transcriptome of type 2 diabetic obese subjects, validating conserved miRNAs in diet-induced mice, and establishing a novel miRNA prediction tool, we provide a robust and unique resource that will pave the way for future studies in the field. As proof of concept, we revealed that the repression of LRP6 by miR-182–5 p, which promotes lipogenesis and impairs glucose homeostasis, provides a novel mechanistic link between T2D and non-alcoholic fatty liver disease, and demonstrate in vivo that miR-182–5 p can serve as a future drug target for the treatment of obesity-driven hepatic steatosis.

    Funding:

    This work was supported by research funding from the Deutsche Forschungsgemeinschaft (KI 1887/2-1, KI 1887/2-2, KI 1887/3-1 and CRC-TR296), the European Research Council (ERC, CoG Yoyo LepReSens no. 101002247; PTP), the Helmholtz Association (Initiative and Networking Fund International Helmholtz Research School for Diabetes; MB) and the German Center for Diabetes Research (DZD Next Grant 82DZD09D1G).