Abstract

SOX2 expression levels are crucial for the balance between maintenance and differentiation of airway progenitor cells during development and regeneration. Here, we describe patterning of the mouse proximal airway epithelium by SOX21, which coincides with high levels of SOX2 during development. Airway progenitor cells in this SOX2+/SOX21+ zone show differentiation to basal cells, specifying cells for the extrapulmonary airways. Loss of SOX21 showed an increased differentiation of SOX2+ progenitor cells to basal and ciliated cells during mouse lung development. We propose a mechanism where SOX21 inhibits differentiation of airway progenitors by antagonizing SOX2-induced expression of specific genes involved in airway differentiation. Additionally, in the adult tracheal epithelium SOX21 inhibits basal to ciliated cell differentiation. This suppressing function of SOX21 on differentiation contrasts SOX2, which mainly drives differentiation of epithelial cells during development and regeneration after injury. Furthermore, using human fetal lung organoids and adult bronchial epithelial cells, we show that SOX2+/SOX21+ regionalization is conserved. Lastly, we show that the interplay between SOX2 and SOX21 is context and concentration dependent leading to regulation of differentiation of the airway epithelium.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 to 6

Article and author information

Author details

  1. Evelien Eenjes

    Pediatric Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Marjon Buscop-van Kempen

    Pediatric Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Anne Boerema-de Munck

    Pediatric Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Gabriela G Edel

    Pediatric Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Floor Benthem

    Pediatric Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Lisette de Kreij-de Bruin

    Pediatric Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Marco Schnater

    Pediatric Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Dick Tibboel

    Pediatric Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Jennifer Collins

    Pediatric Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Robbert J Rottier

    Pediatric Surgery/Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
    For correspondence
    r.rottier@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9291-4971

Funding

Sophia Foundation for Medical Research (S14-12)

  • Evelien Eenjes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimental protocols were approved the national committee ("Centrale Commissie Dierproeven"; number AVD101002017871) and by the animal welfare committee of the veterinary authorities (prtocol numbers 17-871-01 and 17-871-02) of the Erasmus Medical Center.

Copyright

© 2021, Eenjes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,528
    views
  • 202
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Evelien Eenjes
  2. Marjon Buscop-van Kempen
  3. Anne Boerema-de Munck
  4. Gabriela G Edel
  5. Floor Benthem
  6. Lisette de Kreij-de Bruin
  7. Marco Schnater
  8. Dick Tibboel
  9. Jennifer Collins
  10. Robbert J Rottier
(2021)
SOX21 modulates SOX2-initiated differentiation of epithelial cells in the extrapulmonary airways
eLife 10:e57325.
https://doi.org/10.7554/eLife.57325

Share this article

https://doi.org/10.7554/eLife.57325

Further reading

    1. Cell Biology
    Kaima Tsukada, Rikiya Imamura ... Mikio Shimada
    Research Article

    Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3′-phosphatase and 5′-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.

    1. Cell Biology
    2. Neuroscience
    Vibhavari Aysha Bansal, Jia Min Tan ... Toh Hean Ch'ng
    Research Article

    The emergence of Aβ pathology is one of the hallmarks of Alzheimer’s disease (AD), but the mechanisms and impact of Aβ in progression of the disease is unclear. The nuclear pore complex (NPC) is a multi-protein assembly in mammalian cells that regulates movement of macromolecules across the nuclear envelope; its function is shown to undergo age-dependent decline during normal aging and is also impaired in multiple neurodegenerative disorders. Yet not much is known about the impact of Aβ on NPC function in neurons. Here, we examined NPC and nucleoporin (NUP) distribution and nucleocytoplasmic transport using a mouse model of AD (AppNL-G-F/NL-G-F) that expresses Aβ in young animals. Our studies revealed that a time-dependent accumulation of intracellular Aβ corresponded with a reduction of NPCs and NUPs in the nuclear envelope which resulted in the degradation of the permeability barrier and inefficient segregation of nucleocytoplasmic proteins, and active transport. As a result of the NPC dysfunction App KI neurons become more vulnerable to inflammation-induced necroptosis – a programmed cell death pathway where the core components are activated via phosphorylation through nucleocytoplasmic shutting. Collectively, our data implicates Aβ in progressive impairment of nuclear pore function and further confirms that the protein complex is vulnerable to disruption in various neurodegenerative diseases and is a potential therapeutic target.