Photosynthetic sea slugs induce protective changes to the light reactions of the chloroplasts they steal from algae

  1. Vesa Havurinne
  2. Esa Tyystjärvi  Is a corresponding author
  1. University of Turku, Finland

Abstract

Sacoglossan sea slugs are able to maintain functional chloroplasts inside their own cells, and mechanisms that allow preservation of the chloroplasts are unknown. We found that the slug Elysia timida induces changes to the photosynthetic light reactions of the chloroplasts it steals from the alga Acetabularia acetabulum. Working with a large continuous laboratory culture of both the slugs (>500 individuals) and their prey algae, we show that the plastoquinone pool of slug chloroplasts remains oxidized, which can suppress reactive oxygen species formation. Slug chloroplasts also rapidly build up a strong proton motive force upon a dark-to-light transition, which helps them to rapidly switch on photoprotective non-photochemical quenching of excitation energy. Finally, our results suggest that chloroplasts inside E. timida rely on oxygen-dependent electron sinks during rapid changes in light intensity. These photoprotective mechanisms are expected to contribute to the long-term functionality of the chloroplasts inside the slugs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4, Figure 4-figure supplement 1 and Figures 5, 6, 7B-E and 8.

Article and author information

Author details

  1. Vesa Havurinne

    Biochemistry, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5213-0905
  2. Esa Tyystjärvi

    Biochemistry, University of Turku, Turku, Finland
    For correspondence
    esatyy@utu.fi
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6808-7470

Funding

Academy of Finland (307335)

  • Esa Tyystjärvi

Suomen Kulttuurirahasto (Graduate student grant)

  • Vesa Havurinne

Suomalainen Tiedeakatemia (Graduate student grant)

  • Vesa Havurinne

University of Turku graduate school, DPMLS (Graduate student grant)

  • Vesa Havurinne

Academy of Finland (333421)

  • Esa Tyystjärvi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with EU legislation and directives concerning scientific research on non-cephalopod invertebrates.

Reviewing Editor

  1. Christian S Hardtke, University of Lausanne, Switzerland

Version history

  1. Received: March 30, 2020
  2. Accepted: October 7, 2020
  3. Accepted Manuscript published: October 20, 2020 (version 1)
  4. Version of Record published: November 20, 2020 (version 2)

Copyright

© 2020, Havurinne & Tyystjärvi

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 19,235
    Page views
  • 749
    Downloads
  • 21
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vesa Havurinne
  2. Esa Tyystjärvi
(2020)
Photosynthetic sea slugs induce protective changes to the light reactions of the chloroplasts they steal from algae
eLife 9:e57389.
https://doi.org/10.7554/eLife.57389

Share this article

https://doi.org/10.7554/eLife.57389

Further reading

  1. Sea slugs steal from algae to harvest energy from sunlight

    1. Cell Biology
    2. Physics of Living Systems
    Jorge de-Carvalho, Sham Tlili ... Ivo A Telley
    Research Article

    Microtubule asters are essential in localizing the action of microtubules in processes including mitosis and organelle positioning. In large cells, such as the one-cell sea urchin embryo, aster dynamics are dominated by hydrodynamic pulling forces. However, in systems with more densely positioned nuclei such as the early Drosophila embryo, which packs around 6000 nuclei within the syncytium in a crystalline-like order, it is unclear what processes dominate aster dynamics. Here, we take advantage of a cell cycle regulation Drosophila mutant to generate embryos with multiple asters, independent from nuclei. We use an ex vivo assay to further simplify this biological system to explore the forces generated by and between asters. Through live imaging, drug and optical perturbations, and theoretical modeling, we demonstrate that these asters likely generate an effective pushing force over short distances.