Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome

  1. Frank L van de Veerdonk  Is a corresponding author
  2. Mihai G Netea
  3. Marcel van Deuren
  4. Jos WM van der Meer
  5. Quirijn de Mast
  6. Roger J Brüggemann
  7. Hans van der Hoeven
  1. Radboud University Medical Center, Netherlands
  2. Radboud University Medical Centre, Netherlands

Abstract

COVID-19 patients can present with pulmonary edema early in disease. We propose that the this is due to a local vascular problem because of activation of bradykinin 1 receptor (B1R) and B2R on endothelial cells in the lungs. SARS-CoV-2 enters the cell via ACE2 that next to its role in RAS is needed to inactivate des-Arg9 bradykinin, the potent ligand of the bradykinin receptor type 1 (B1). Without ACE2 acting as a guardian to inactivate the ligands of B1, the lung environment is prone for local vascular leakage leading to angioedema. Here we hypothesize that a bradykinin-dependent local lung angioedema via B1 and B2 receptors is an important feature of COVID-19. We propose that blocking the B2 receptor and inhibiting kallikrein activity might have an ameliorating effect on early disease caused by COVID-19 and might prevent acute respiratory distress syndrome (ARDS). In addition, this pathway might indirectly be responsive to anti-inflammatory agents.

Data availability

There are no datasets associated with this work.

Article and author information

Author details

  1. Frank L van de Veerdonk

    Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    For correspondence
    frank.vandeveerdonk@radboudumc.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1121-4894
  2. Mihai G Netea

    Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  3. Marcel van Deuren

    Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  4. Jos WM van der Meer

    Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
    Competing interests
    Jos WM van der Meer, Senior editor, eLife.
  5. Quirijn de Mast

    Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  6. Roger J Brüggemann

    Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  7. Hans van der Hoeven

    Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.

Funding

No external funding was received for this work.

Copyright

© 2020, van de Veerdonk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,887
    views
  • 1,442
    downloads
  • 228
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Frank L van de Veerdonk
  2. Mihai G Netea
  3. Marcel van Deuren
  4. Jos WM van der Meer
  5. Quirijn de Mast
  6. Roger J Brüggemann
  7. Hans van der Hoeven
(2020)
Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome
eLife 9:e57555.
https://doi.org/10.7554/eLife.57555

Share this article

https://doi.org/10.7554/eLife.57555

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    3. Epidemiology and Global Health
    4. Immunology and Inflammation
    Edited by Jos WM van der Meer et al.
    Collection

    eLife has published articles on a wide range of infectious diseases, including COVID-19, influenza, tuberculosis, HIV/AIDS, malaria and typhoid fever.

    1. Immunology and Inflammation
    2. Medicine
    Haiyi Fei, Xiaowen Lu ... Lingling Jiang
    Research Article

    Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RACCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3CCR7+HeliosCD127CD8+) and pro-inflam Macs (CD206CD163CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206 pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1–IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal–fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.