Aging and Geroscience: Putting epigenetic biomarkers to the test for clinical trials
Geroscience is a developing discipline based on the premise that health can be improved by targeting aging. This hypothesis is supported by evidence that interventions (such as changes in diet) can improve the health and extend the lifespan of various animal models (López-Otín et al., 2013). Clinical trials are underway to test the geroscience hypothesis in humans (Barzilai et al., 2016). Definitive tests of the hypothesis must demonstrate reduced rates of age-related diseases and death, but the length of time and size of trial needed to test the hypothesis are both substantial. Therefore, objective, quantifiable characteristics of the aging process – known as biomarkers – that can be tracked in clinical trials are needed for the field to progress.
Useful biomarkers should meet several criteria: i) their measurement should be reliable and feasible; ii) they should be relevant to aging; iii) they should robustly and consistently predict trial endpoints, such as functional ability, disease, or death; and iv) they should be responsive to interventions such as treatments targeting aging biology (Justice et al., 2018). Practically speaking, this means that a change in the level of a biomarker should parallel changes in the susceptibility to disease, age of death, or loss of function. Interventions that target aging and support the geroscience hypothesis should therefore also lead to changes in these biomarkers, which will be reflected in the incidence or severity of age-related diseases and functional decline.
Biomarkers based on DNA methylation levels look promising. Briefly, these biomarkers quantify the proportion of cells in which a gene locus is methylated. Small but consistent changes in the methylation of some loci occur in organisms with older ages, and early methods for estimating age using epigenetics took advantage of these chronologic changes (Hannum et al., 2013; Horvath, 2013). However, critics argue that while these ‘clocks’ may be associated with chronological age, it is uncertain whether they reflect meaningful change in the context of interventions affecting the underlying biology.
Estimators based on the levels of DNA methylation are now being developed to detect a myriad of disease states and predict mortality and adverse health events, and each is unique to its calibration method. A few of these estimators are calibrated to detect aging-related outcomes, which makes them attractive as possible biomarkers for clinical trials in geroscience. Now, in eLife, Daniel Belsky (Columbia University) and colleagues in the United States, the United Kingdom, Denmark and New Zealand report the development of a new epigenetic biomarker called Dunedin Pace of Aging methylation (DunedinPoAm) that is able to detect how aging phenotypes change over time (Belsky et al., 2020).
The new biomarker relies on a composite measure called the Pace of Aging that was developed by Belsky and colleagues several years ago (Belsky et al., 2015). The Pace of Aging is calculated based on a number of age-related phenotypic changes that occur over time. In the new work this measure was used to calibrate and validate a DNA-wide methylation clock in four independent cohorts. This is in contrast to previous approaches in which methylation biomarkers were calibrated using endpoints such as chronological age, death, environmental exposure or other biomarkers.
Is DunedinPoAm developed to the point where it could be relied upon as a biomarker for clinical trials targeting biological aging? Figure 1 shows four criteria that are used to evaluate DNA methylation as a biomarker. DunedinPoAm appears to satisfy the first three criteria. It remains to be seen if it can satisfy the fourth, which involves being responsive to interventions. One of the cohorts used to validate the new approach consisted of middle-aged, non-obese adults enrolled in the CALERIE trial. This trial tested the effects of caloric restriction – an intervention that has been successful in animal models – over a period of two years. DunedinPoAm was able to predict changes in the Pace of Aging measure in the control group, but not in the group that had been calorie restricted. However, it remains to be seen whether interventions which affect aging biology change DunedinPoAm in a way that is consistent with the phenotypic changes observed in the trial.
Testing the geroscience hypothesis in clinical trials is still in its early days, so it is not surprising that DunedinPoAm does not yet meet the primary criterion for an aging biomarker. However, emerging evidence suggests that methylation state may change with intervention. Data from two small clinical studies, with fewer than 15 people in the control and intervention groups, suggest that methylation-based biomarkers just might meet the minimum burden of proof (Chen et al., 2019; Fahy et al., 2019). However, the acid test for any biomarker will be whether changes in its levels predict differences in the rate of chronic disease accumulation or progression, death or other clinical trial endpoints. This will require a large study like the planned Targeted Aging with MEtformin (TAME) trial, which will last for over four years and include 3000 test subjects. This trial will test the effects of metformin, a drug currently used to treat type 2 diabetes, on FDA-informed clinical disease endpoints and functional ability. Trials like this will provide a platform for discovery, data sharing, and widescale biomarker validation to accelerate the pace of progress in geroscience.
References
-
Metformin as a tool to target agingCell Metabolism 23:1060–1065.https://doi.org/10.1016/j.cmet.2016.05.011
Article and author information
Author details
Publication history
Copyright
© 2020, Justice and Kritchevsky
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,225
- views
-
- 227
- downloads
-
- 22
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
- Genetics and Genomics
Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.
-
- Epidemiology and Global Health
Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.