NAIP-NLRC4-deficient mice are susceptible to shigellosis

  1. Patrick S Mitchell
  2. Justin L Roncaioli
  3. Elizabeth A Turcotte
  4. Lisa Goers
  5. Roberto A Chavez
  6. Angus Y Lee
  7. Cammie F Lesser
  8. Isabella Rauch
  9. Russell E Vance  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Harvard Medical School, United States
  3. Massachusetts General Hospital, United States
  4. Oregon Health and Sciences University, United States

Abstract

Bacteria of the genus Shigella cause shigellosis, a severe gastrointestinal disease that is a major cause of diarrhea-associated mortality in humans. Mice are highly resistant to Shigella and the lack of a tractable physiological model of shigellosis has impeded our understanding of this important human disease. Here we propose that the differential susceptibility of mice and humans to Shigella is due to mouse-specific activation of the NAIP–NLRC4 inflammasome. We find that NAIP–NLRC4-deficient mice are highly susceptible to oral Shigella infection and recapitulate the clinical features of human shigellosis. Although inflammasomes are generally thought to promote Shigella pathogenesis, we instead demonstrate that intestinal epithelial cell (IEC)-specific NAIP–NLRC4 activity is sufficient to protect mice from shigellosis. In addition to describing a new mouse model of shigellosis, our results suggest that the lack of an inflammasome response in IECs may help explain the susceptibility of humans to shigellosis.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Patrick S Mitchell

    Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Justin L Roncaioli

    Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Elizabeth A Turcotte

    Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Lisa Goers

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Roberto A Chavez

    Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Angus Y Lee

    Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Cammie F Lesser

    Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, United States
    Competing interests
    No competing interests declared.
  8. Isabella Rauch

    Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, United States
    Competing interests
    No competing interests declared.
  9. Russell E Vance

    Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    rvance@berkeley.edu
    Competing interests
    Russell E Vance, R.E.V. has a financial relationship with Aduro BioTech and Ventus Therapeutics and both he and the companies may benefit from the commercialization of the results of this research.Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6686-3912

Funding

Howard Hughes Medical Institute

  • Russell E Vance

National Institutes of Health (AI075039,AI063302)

  • Russell E Vance

National Institutes of Health (AI064285,AI128743)

  • Cammie F Lesser

Jane Coffin Childs Memorial Fund for Medical Research (Postdoctoral Fellowship)

  • Patrick S Mitchell

Irving H. Wiesenfeld CEND Fellow (Graduate Student Fellowship)

  • Justin L Roncaioli

UC Berkeley Department of Molecular and Cell Biology, NIH (Graduate Training Grant 5T32GM007232-42)

  • Elizabeth A Turcotte

Brit d'Arbeloff MGH Research Scholar

  • Cammie F Lesser

Medical Research Foundation (MRF2012)

  • Isabella Rauch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christina L Stallings, Washington University School of Medicine, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AUP-2014-09-6665-1) of the University of California Berkeley.

Version history

  1. Received: May 18, 2020
  2. Accepted: October 16, 2020
  3. Accepted Manuscript published: October 19, 2020 (version 1)
  4. Version of Record published: October 29, 2020 (version 2)

Copyright

© 2020, Mitchell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,220
    Page views
  • 574
    Downloads
  • 49
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Patrick S Mitchell
  2. Justin L Roncaioli
  3. Elizabeth A Turcotte
  4. Lisa Goers
  5. Roberto A Chavez
  6. Angus Y Lee
  7. Cammie F Lesser
  8. Isabella Rauch
  9. Russell E Vance
(2020)
NAIP-NLRC4-deficient mice are susceptible to shigellosis
eLife 9:e59022.
https://doi.org/10.7554/eLife.59022

Share this article

https://doi.org/10.7554/eLife.59022

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Xinjian Ye, Yijing Bai ... Qianming Chen
    Research Article

    Periodontitis drives irreversible destruction of periodontal tissue and is prone to exacerbating inflammatory disorders. Systemic immunomodulatory management continues to be an attractive approach in periodontal care, particularly within the context of ‘predictive, preventive, and personalized’ periodontics. The present study incorporated genetic proxies identified through genome-wide association studies for circulating immune cells and periodontitis into a comprehensive Mendelian randomization (MR) framework. Univariable MR, multivariable MR, subgroup analysis, reverse MR, and Bayesian model averaging (MR-BMA) were utilized to investigate the causal relationships. Furthermore, transcriptome-wide association study and colocalization analysis were deployed to pinpoint the underlying genes. Consequently, the MR study indicated a causal association between circulating neutrophils, natural killer T cells, plasmacytoid dendritic cells, and an elevated risk of periodontitis. MR-BMA analysis revealed that neutrophils were the primary contributors to periodontitis. The high-confidence genes S100A9 and S100A12, located on 1q21.3, could potentially serve as immunomodulatory targets for neutrophil-mediated periodontitis. These findings hold promise for early diagnosis, risk assessment, targeted prevention, and personalized treatment of periodontitis. Considering the marginal association observed in our study, further research is required to comprehend the biological underpinnings and ascertain the clinical relevance thoroughly.

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.