NAIP-NLRC4-deficient mice are susceptible to shigellosis

  1. Patrick S Mitchell
  2. Justin L Roncaioli
  3. Elizabeth A Turcotte
  4. Lisa Goers
  5. Roberto A Chavez
  6. Angus Y Lee
  7. Cammie F Lesser
  8. Isabella Rauch
  9. Russell E Vance  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Harvard Medical School, United States
  3. Massachusetts General Hospital, United States
  4. Oregon Health and Sciences University, United States

Abstract

Bacteria of the genus Shigella cause shigellosis, a severe gastrointestinal disease that is a major cause of diarrhea-associated mortality in humans. Mice are highly resistant to Shigella and the lack of a tractable physiological model of shigellosis has impeded our understanding of this important human disease. Here we propose that the differential susceptibility of mice and humans to Shigella is due to mouse-specific activation of the NAIP–NLRC4 inflammasome. We find that NAIP–NLRC4-deficient mice are highly susceptible to oral Shigella infection and recapitulate the clinical features of human shigellosis. Although inflammasomes are generally thought to promote Shigella pathogenesis, we instead demonstrate that intestinal epithelial cell (IEC)-specific NAIP–NLRC4 activity is sufficient to protect mice from shigellosis. In addition to describing a new mouse model of shigellosis, our results suggest that the lack of an inflammasome response in IECs may help explain the susceptibility of humans to shigellosis.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Patrick S Mitchell

    Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Justin L Roncaioli

    Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Elizabeth A Turcotte

    Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Lisa Goers

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Roberto A Chavez

    Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Angus Y Lee

    Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Cammie F Lesser

    Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, United States
    Competing interests
    No competing interests declared.
  8. Isabella Rauch

    Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, United States
    Competing interests
    No competing interests declared.
  9. Russell E Vance

    Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    rvance@berkeley.edu
    Competing interests
    Russell E Vance, R.E.V. has a financial relationship with Aduro BioTech and Ventus Therapeutics and both he and the companies may benefit from the commercialization of the results of this research.Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6686-3912

Funding

Howard Hughes Medical Institute

  • Russell E Vance

National Institutes of Health (AI075039,AI063302)

  • Russell E Vance

National Institutes of Health (AI064285,AI128743)

  • Cammie F Lesser

Jane Coffin Childs Memorial Fund for Medical Research (Postdoctoral Fellowship)

  • Patrick S Mitchell

Irving H. Wiesenfeld CEND Fellow (Graduate Student Fellowship)

  • Justin L Roncaioli

UC Berkeley Department of Molecular and Cell Biology, NIH (Graduate Training Grant 5T32GM007232-42)

  • Elizabeth A Turcotte

Brit d'Arbeloff MGH Research Scholar

  • Cammie F Lesser

Medical Research Foundation (MRF2012)

  • Isabella Rauch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christina L Stallings, Washington University School of Medicine, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AUP-2014-09-6665-1) of the University of California Berkeley.

Version history

  1. Received: May 18, 2020
  2. Accepted: October 16, 2020
  3. Accepted Manuscript published: October 19, 2020 (version 1)
  4. Version of Record published: October 29, 2020 (version 2)

Copyright

© 2020, Mitchell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,392
    views
  • 591
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Patrick S Mitchell
  2. Justin L Roncaioli
  3. Elizabeth A Turcotte
  4. Lisa Goers
  5. Roberto A Chavez
  6. Angus Y Lee
  7. Cammie F Lesser
  8. Isabella Rauch
  9. Russell E Vance
(2020)
NAIP-NLRC4-deficient mice are susceptible to shigellosis
eLife 9:e59022.
https://doi.org/10.7554/eLife.59022

Share this article

https://doi.org/10.7554/eLife.59022

Further reading

    1. Immunology and Inflammation
    Hyereen Kang, Seong Woo Choi ... Myung-Shik Lee
    Research Article

    We studied lysosomal Ca2+ in inflammasome. Lipopolysaccharide (LPS) + palmitic acid (PA) decreased lysosomal Ca2+ ([Ca2+]Lys) and increased [Ca2+]i through mitochondrial ROS, which was suppressed in Trpm2-KO macrophages. Inflammasome activation and metabolic inflammation in adipose tissue of high-fat diet (HFD)-fed mice were ameliorated by Trpm2 KO. ER→lysosome Ca2+ refilling occurred after lysosomal Ca2+ release whose blockade attenuated LPS + PA-induced inflammasome. Subsequently, store-operated Ca2+entry (SOCE) was activated whose inhibition suppressed inflammasome. SOCE was coupled with K+ efflux whose inhibition reduced ER Ca2+ content ([Ca2+]ER) and impaired [Ca2+]Lys recovery. LPS + PA activated KCa3.1 channel, a Ca2+-activated K+ channel. Inhibitors of KCa3.1 channel or Kcnn4 KO reduced [Ca2+]ER, attenuated increase of [Ca2+]i or inflammasome activation by LPS + PA, and ameliorated HFD-induced inflammasome or metabolic inflammation. Lysosomal Ca2+ release induced delayed JNK and ASC phosphorylation through CAMKII-ASK1. These results suggest a novel role of lysosomal Ca2+ release sustained by ERlysosome Ca2+ refilling and K+ efflux through KCa3.1 channel in inflammasome activation and metabolic inflammation.

    1. Immunology and Inflammation
    Thomas Morgan Li, Victoria Zyulina ... Theresa T Lu
    Research Article Updated

    The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.