1. Computational and Systems Biology
  2. Medicine
Download icon

A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm

  1. Mike R Garvin
  2. Christiane Alvarez
  3. J Izaak Miller
  4. Erica T Prates
  5. Angelica M Walker
  6. B Kirtley Amos
  7. Alan E Mast
  8. Amy Justice
  9. Bruce Aronow
  10. Daniel Jacobson  Is a corresponding author
  1. Oak Ridge National Laboratory, United States
  2. University of Tennessee Knoxville, United States
  3. University of Kentucky, United States
  4. Medical College of Wisconsin, United States
  5. Yale University, United States
  6. Cincinnati Children's Hospital Research Foundation, United States
Short Report
  • Cited 129
  • Views 150,625
  • Annotations
Cite this article as: eLife 2020;9:e59177 doi: 10.7554/eLife.59177

Abstract

Neither the disease mechanism nor treatments for COVID-19 are currently known. Here we present a novel molecular mechanism for COVID-19 that provides therapeutic intervention points that can be addressed with existing FDA-approved pharmaceuticals. The entry point for the virus is ACE2, which is a component of the counteracting hypotensive axis of RAS, that produces the nonapeptide angiotensin1-9 from angiotensin I. Bradykinin is a potent, but often forgotten, part of the vasopressor system that induces hypotension and vasodilation 1, and is regulated by ACE and enhanced by angiotensin1-9 2. Here we perform a completely new analysis on gene expression data from cells of bronchoalveolar lavage samples from COVID-19 patients that were used to sequence the virus, but the host information was discarded 3. Comparison with lavage samples from controls identify a critical imbalance in RAS represented by decreased expression of ACE in combination with increases in ACE2, renin (REN) , angiotensin (AGT), key RAS receptors (AGTR2, AGTR1), kinogen (KNG) and the kallikrein enzymes (KLKB1, many of KLK-1-15) that activate it, and both bradykinin receptors (BDKRB1, BDKRB2). This very atypical pattern of the RAS is predicted to elevate bradykinin levels in multiple tissues and systems that will likely cause increases in vascular dilation, vascular permeability and hypotension. These bradykinin-driven outcomes explain many of the symptoms being observed in COVID-19.

Data availability

FASTQ files are available from the NCBI Sequence Read Archive (PRJNA605983 and PRJNA434133)https://www.ncbi.nlm.nih.gov/sraLeinonen, R., Sugawara, H., Shumway, M. and International Nucleotide Sequence Database Collaboration, 2010. The sequence read archive. Nucleic acids research, 39(suppl_1), pp.D19-D21.

The following data sets were generated

Article and author information

Author details

  1. Mike R Garvin

    Biosciences, Oak Ridge National Laboratory, Oak Ridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christiane Alvarez

    Biosciences, Oak Ridge National Laboratory, Oak Ridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. J Izaak Miller

    Biosciences, Oak Ridge National Laboratory, Oak Ridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Erica T Prates

    Biosciences, Oak Ridge National Laboratory, Oak Ridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Angelica M Walker

    The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. B Kirtley Amos

    Horticulture, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alan E Mast

    Versiti Blood Research Institute, Medical College of Wisconsin, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Amy Justice

    School of Medicine, Yale University, West Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Bruce Aronow

    Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel Jacobson

    Biosciences, Oak Ridge National Laboratory, Oak Ridge, United States
    For correspondence
    jacobsonda@ornl.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9822-8251

Funding

Oak Ridge National Laboratory (LOIS:10074)

  • Mike R Garvin
  • J Izaak Miller
  • Erica T Prates
  • Daniel Jacobson

U.S. Department of Energy (National Virtual Biotechnology Laboratory)

  • Mike R Garvin
  • Christiane Alvarez
  • J Izaak Miller
  • Erica T Prates
  • Angelica M Walker
  • Daniel Jacobson

National Institutes of Health (U24 HL148865)

  • Bruce Aronow

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frank L van de Veerdonk, Radboud University Medical Center, Netherlands

Publication history

  1. Received: May 21, 2020
  2. Accepted: July 6, 2020
  3. Accepted Manuscript published: July 7, 2020 (version 1)
  4. Accepted Manuscript updated: July 8, 2020 (version 2)
  5. Version of Record published: August 6, 2020 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 150,625
    Page views
  • 7,911
    Downloads
  • 129
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Computational and Systems Biology
    Christopher P Mancuso et al.
    Research Article Updated

    Environmental disturbances have long been theorized to play a significant role in shaping the diversity and composition of ecosystems. However, an inability to specify the characteristics of a disturbance experimentally has produced an inconsistent picture of diversity-disturbance relationships (DDRs). Here, using a high-throughput programmable culture system, we subjected a soil-derived bacterial community to dilution disturbance profiles with different intensities (mean dilution rates), applied either constantly or with fluctuations of different frequencies. We observed an unexpected U-shaped relationship between community diversity and disturbance intensity in the absence of fluctuations. Adding fluctuations increased community diversity and erased the U-shape. All our results are well-captured by a Monod consumer resource model, which also explains how U-shaped DDRs emerge via a novel ‘niche flip’ mechanism. Broadly, our combined experimental and modeling framework demonstrates how distinct features of an environmental disturbance can interact in complex ways to govern ecosystem assembly and offers strategies for reshaping the composition of microbiomes.

    1. Computational and Systems Biology
    Michael S Lauer, Deepshikha Roychowdhury
    Research Article Updated

    Previous reports have described worsening inequalities of National Institutes of Health (NIH) funding. We analyzed Research Project Grant data through the end of Fiscal Year 2020, confirming worsening inequalities beginning at the time of the NIH budget doubling (1998–2003), while finding that trends in recent years have reversed for both investigators and institutions, but only to a modest degree. We also find that career-stage trends have stabilized, with equivalent proportions of early-, mid-, and late-career investigators funded from 2017 to 2020. The fraction of women among funded PIs continues to increase, but they are still not at parity. Analyses of funding inequalities show that inequalities for investigators, and to a lesser degree for institutions, have consistently been greater within groups (i.e. within groups by career stage, gender, race, and degree) than between groups.