Identifying molecular features that are associated with biological function of intrinsically disordered protein regions

  1. Taraneh Zarin  Is a corresponding author
  2. Bob Strome
  3. Gang Peng
  4. Iva Pritišanac
  5. Julie Deborah Forman-Kay
  6. Alan M Moses  Is a corresponding author
  1. University of Toronto, Canada
  2. Hospital for Sick Children, Canada

Abstract

In previous work, we showed that intrinsically disordered regions (IDRs) of proteins contain sequence-distributed molecular features that are conserved over evolution, despite little sequence similarity that can be detected in alignments (Zarin et al. 2019). Here, we aim to use these molecular features to predict specific biological functions for individual IDRs and identify the molecular features within them that are associated with these functions. We find that the predictable functions are diverse. Examining the associated molecular features, we note some that are consistent with previous reports, and identify others that were previously unknown. We experimentally confirm that elevated isoelectric point and hydrophobicity, features that are positively associated with mitochondrial localization, are necessary for mitochondrial targeting function. Remarkably, increasing isoelectric point in a synthetic IDR restores weak mitochondrial targeting. We believe feature analysis represents a new systematic approach to understand how biological functions of IDRs are specified by their protein sequences.

Data availability

All data generated or analysed during this study are included in the manuscript, supporting files and the accompanying website.

Article and author information

Author details

  1. Taraneh Zarin

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    For correspondence
    taraneh.zarin@mail.utoronto.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1253-3843
  2. Bob Strome

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  3. Gang Peng

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  4. Iva Pritišanac

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    Competing interests
    No competing interests declared.
  5. Julie Deborah Forman-Kay

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8265-972X
  6. Alan M Moses

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    For correspondence
    alan.moses@utoronto.ca
    Competing interests
    Alan M Moses, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3118-3121

Funding

Canadian Institutes of Health Research (PJT-148532)

  • Julie Deborah Forman-Kay
  • Alan M Moses

Canadian Institutes of Health Research (FDN-148375)

  • Julie Deborah Forman-Kay

NSERC

  • Taraneh Zarin
  • Alan M Moses

Canadian Foundation for Innovation

  • Alan M Moses

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael B Eisen, University of California, Berkeley, United States

Version history

  1. Received: June 23, 2020
  2. Accepted: February 22, 2021
  3. Accepted Manuscript published: February 22, 2021 (version 1)
  4. Version of Record published: March 4, 2021 (version 2)

Copyright

© 2021, Zarin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,205
    Page views
  • 601
    Downloads
  • 33
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Taraneh Zarin
  2. Bob Strome
  3. Gang Peng
  4. Iva Pritišanac
  5. Julie Deborah Forman-Kay
  6. Alan M Moses
(2021)
Identifying molecular features that are associated with biological function of intrinsically disordered protein regions
eLife 10:e60220.
https://doi.org/10.7554/eLife.60220

Share this article

https://doi.org/10.7554/eLife.60220

Further reading

    1. Cell Biology
    Fabian Link, Alyssa Borges ... Markus Engstler
    Research Article

    Endocytosis is a common process observed in most eukaryotic cells, although its complexity varies among different organisms. In Trypanosoma brucei, the endocytic machinery is under special selective pressure because rapid membrane recycling is essential for immune evasion. This unicellular parasite effectively removes host antibodies from its cell surface through hydrodynamic drag and fast endocytic internalization. The entire process of membrane recycling occurs exclusively through the flagellar pocket, an extracellular organelle situated at the posterior pole of the spindle-shaped cell. The high-speed dynamics of membrane flux in trypanosomes do not seem compatible with the conventional concept of distinct compartments for early endosomes (EE), late endosomes (LE), and recycling endosomes (RE). To investigate the underlying structural basis for the remarkably fast membrane traffic in trypanosomes, we employed advanced techniques in light and electron microscopy to examine the three-dimensional architecture of the endosomal system. Our findings reveal that the endosomal system in trypanosomes exhibits a remarkably intricate structure. Instead of being compartmentalized, it constitutes a continuous membrane system, with specific functions of the endosome segregated into membrane subdomains enriched with classical markers for EE, LE, and RE. These membrane subdomains can partly overlap or are interspersed with areas that are negative for endosomal markers. This continuous endosome allows fast membrane flux by facilitated diffusion that is not slowed by multiple fission and fusion events.

    1. Cell Biology
    2. Neuroscience
    Haibin Yu, Dandan Liu ... Kai Yuan
    Research Article

    O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.