Identifying molecular features that are associated with biological function of intrinsically disordered protein regions

  1. Taraneh Zarin  Is a corresponding author
  2. Bob Strome
  3. Gang Peng
  4. Iva Pritišanac
  5. Julie Deborah Forman-Kay
  6. Alan M Moses  Is a corresponding author
  1. University of Toronto, Canada
  2. Hospital for Sick Children, Canada

Abstract

In previous work, we showed that intrinsically disordered regions (IDRs) of proteins contain sequence-distributed molecular features that are conserved over evolution, despite little sequence similarity that can be detected in alignments (Zarin et al. 2019). Here, we aim to use these molecular features to predict specific biological functions for individual IDRs and identify the molecular features within them that are associated with these functions. We find that the predictable functions are diverse. Examining the associated molecular features, we note some that are consistent with previous reports, and identify others that were previously unknown. We experimentally confirm that elevated isoelectric point and hydrophobicity, features that are positively associated with mitochondrial localization, are necessary for mitochondrial targeting function. Remarkably, increasing isoelectric point in a synthetic IDR restores weak mitochondrial targeting. We believe feature analysis represents a new systematic approach to understand how biological functions of IDRs are specified by their protein sequences.

Data availability

All data generated or analysed during this study are included in the manuscript, supporting files and the accompanying website.

Article and author information

Author details

  1. Taraneh Zarin

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    For correspondence
    taraneh.zarin@mail.utoronto.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1253-3843
  2. Bob Strome

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  3. Gang Peng

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  4. Iva Pritišanac

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    Competing interests
    No competing interests declared.
  5. Julie Deborah Forman-Kay

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8265-972X
  6. Alan M Moses

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    For correspondence
    alan.moses@utoronto.ca
    Competing interests
    Alan M Moses, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3118-3121

Funding

Canadian Institutes of Health Research (PJT-148532)

  • Julie Deborah Forman-Kay
  • Alan M Moses

Canadian Institutes of Health Research (FDN-148375)

  • Julie Deborah Forman-Kay

NSERC

  • Taraneh Zarin
  • Alan M Moses

Canadian Foundation for Innovation

  • Alan M Moses

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Zarin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,042
    views
  • 689
    downloads
  • 77
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Taraneh Zarin
  2. Bob Strome
  3. Gang Peng
  4. Iva Pritišanac
  5. Julie Deborah Forman-Kay
  6. Alan M Moses
(2021)
Identifying molecular features that are associated with biological function of intrinsically disordered protein regions
eLife 10:e60220.
https://doi.org/10.7554/eLife.60220

Share this article

https://doi.org/10.7554/eLife.60220

Further reading

    1. Cancer Biology
    2. Cell Biology
    Brooke A Conti, Leo Novikov ... Mariano Oppikofer
    Research Article

    DNA base lesions, such as incorporation of uracil into DNA or base mismatches, can be mutagenic and toxic to replicating cells. To discover factors in repair of genomic uracil, we performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluorouracil into DNA. We identified known factors, such as uracil DNA N-glycosylase (UNG), and unknown factors, such as the N6-adenosine methyltransferase, METTL3, as required to overcome floxuridine-driven cytotoxicity. Visualized with immunofluorescence, the product of METTL3 activity, N6-methyladenosine, formed nuclear foci in cells treated with floxuridine. The observed N6-methyladenosine was embedded in DNA, called 6mA, and these results were confirmed using an orthogonal approach, liquid chromatography coupled to tandem mass spectrometry. METTL3 and 6mA were required for repair of lesions driven by additional base-damaging agents, including raltitrexed, gemcitabine, and hydroxyurea. Our results establish a role for METTL3 and 6mA in promoting genome stability in mammalian cells, especially in response to base damage.

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.