1. Cell Biology
  2. Computational and Systems Biology
Download icon

Identifying molecular features that are associated with biological function of intrinsically disordered protein regions

  1. Taraneh Zarin  Is a corresponding author
  2. Bob Strome
  3. Gang Peng
  4. Iva Pritišanac
  5. Julie Deborah Forman-Kay
  6. Alan M Moses  Is a corresponding author
  1. University of Toronto, Canada
  2. Hospital for Sick Children, Canada
Research Advance
  • Cited 0
  • Views 666
  • Annotations
Cite this article as: eLife 2021;10:e60220 doi: 10.7554/eLife.60220

Abstract

In previous work, we showed that intrinsically disordered regions (IDRs) of proteins contain sequence-distributed molecular features that are conserved over evolution, despite little sequence similarity that can be detected in alignments (Zarin et al. 2019). Here, we aim to use these molecular features to predict specific biological functions for individual IDRs and identify the molecular features within them that are associated with these functions. We find that the predictable functions are diverse. Examining the associated molecular features, we note some that are consistent with previous reports, and identify others that were previously unknown. We experimentally confirm that elevated isoelectric point and hydrophobicity, features that are positively associated with mitochondrial localization, are necessary for mitochondrial targeting function. Remarkably, increasing isoelectric point in a synthetic IDR restores weak mitochondrial targeting. We believe feature analysis represents a new systematic approach to understand how biological functions of IDRs are specified by their protein sequences.

Article and author information

Author details

  1. Taraneh Zarin

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    For correspondence
    taraneh.zarin@mail.utoronto.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1253-3843
  2. Bob Strome

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  3. Gang Peng

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  4. Iva Pritišanac

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    Competing interests
    No competing interests declared.
  5. Julie Deborah Forman-Kay

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8265-972X
  6. Alan M Moses

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    For correspondence
    alan.moses@utoronto.ca
    Competing interests
    Alan M Moses, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3118-3121

Funding

Canadian Institutes of Health Research (PJT-148532)

  • Julie Deborah Forman-Kay
  • Alan M Moses

Canadian Institutes of Health Research (FDN-148375)

  • Julie Deborah Forman-Kay

NSERC

  • Taraneh Zarin
  • Alan M Moses

Canadian Foundation for Innovation

  • Alan M Moses

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael B Eisen, University of California, Berkeley, United States

Publication history

  1. Received: June 23, 2020
  2. Accepted: February 22, 2021
  3. Accepted Manuscript published: February 22, 2021 (version 1)

Copyright

© 2021, Zarin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 666
    Page views
  • 132
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Haibin Yang et al.
    Research Article Updated

    Communications between actin filaments and integrin-mediated focal adhesion (FA) are crucial for cell adhesion and migration. As a core platform to organize FA proteins, the tripartite ILK/PINCH/Parvin (IPP) complex interacts with actin filaments to regulate the cytoskeleton-FA crosstalk. Rsu1, a Ras suppressor, is enriched in FA through PINCH1 and plays important roles in regulating F-actin structures. Here, we solved crystal structures of the Rsu1/PINCH1 complex, in which the leucine-rich-repeats of Rsu1 form a solenoid structure to tightly associate with the C-terminal region of PINCH1. Further structural analysis uncovered that the interaction between Rsu1 and PINCH1 blocks the IPP-mediated F-actin bundling by disrupting the binding of PINCH1 to actin. Consistently, overexpressing Rsu1 in HeLa cells impairs stress fiber formation and cell spreading. Together, our findings demonstrated that Rsu1 is critical for tuning the communication between F-actin and FA by interacting with the IPP complex and negatively modulating the F-actin bundling.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Qiuying Liu et al.
    Research Article Updated

    The regulation of stem cell fate is poorly understood. Genetic studies in Caenorhabditis elegans lead to the hypothesis that a conserved cytoplasmic double-negative feedback loop consisting of the RNA-binding protein Trim71 and the let-7 microRNA controls the pluripotency and differentiation of stem cells. Although let-7-microRNA-mediated inhibition of Trim71 promotes differentiation, whether and how Trim71 regulates pluripotency and inhibits the let-7 microRNA are still unknown. Here, we show that Trim71 represses Ago2 mRNA translation in mouse embryonic stem cells. Blocking this repression leads to a specific post-transcriptional increase of mature let-7 microRNAs, resulting in let-7-dependent stemness defects and accelerated differentiation in the stem cells. These results not only support the Trim71-let-7-microRNA bi-stable switch model in controlling stem cell fate, but also reveal that repressing the conserved pro-differentiation let-7 microRNAs at the mature microRNA level by Ago2 availability is critical to maintaining pluripotency.