Magnesium efflux from Drosophila Kenyon Cells is critical for normal and diet-enhanced long-term memory
Abstract
Dietary magnesium (Mg2+) supplementation can enhance memory in young and aged rats. Memory-enhancing capacity was largely ascribed to increases in hippocampal synaptic density and elevated expression of the NR2B subunit of the NMDA-type glutamate receptor. Here we show that Mg2+ feeding also enhances long-term memory in Drosophila. Normal and Mg2+ enhanced fly memory appears independent of NMDA receptors in the mushroom body and instead requires expression of a conserved CNNM-type Mg2+-efflux transporter encoded by the unextended (uex) gene. UEX contains a putative cyclic nucleotide-binding homology domain and its mutation separates a vital role for uex from a function in memory. Moreover, UEX localization in mushroom body Kenyon Cells is altered in memory defective flies harboring mutations in cAMP-related genes. Functional imaging suggests that UEX-dependent efflux is required for slow rhythmic maintenance of Kenyon Cell Mg2+. We propose that regulated neuronal Mg2+ efflux is critical for normal and Mg2+ enhanced memory.
Data availability
Behaviour data from T-maza assays deposited in Dryad Digital Repository (doi:10.5061/dryad.q2bvq83hs). All other data generated or analysed during this study are included in the manuscript and supporting files.
-
Behavior data from T-maze assayDryad Digital Repository, doi:10.5061/dryad.q2bvq83hs.
-
Imaging data from ex-vivo MagIC assay Part IIDryad Digital Repository, doi:10.5061/dryad.zpc866t7d.
-
MagFRET signal from fixed brainDryad Digital Repository, doi:10.5061/dryad.dv41ns1wp.
-
Imaging data from ex-vivo MagIC assay Part IDryad Digital Repository, doi:10.5061/dryad.k0p2ngf6z.
-
Immuno-Fluorescence data from confocal scanningDryad Digital Repository, doi:10.5061/dryad.80gb5mkpx.
Article and author information
Author details
Funding
Wellcome (200846/Z/16/Z)
- Scott Waddell
European Commission (789274)
- Scott Waddell
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Wu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,626
- views
-
- 459
- downloads
-
- 8
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
Magnesium supplements help boost long-term memory in flies
-
- Neuroscience
Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium. Our analysis reveals diverse cell types with gene expression patterns specific to each, which we made available as a searchable web resource accessed from https://www.scvnoexplorer.com. Pseudo-time developmental analysis indicates that neurons originating from common progenitors diverge in their gene expression during maturation with transient and persistent transcription factor expression at critical branch points. Comparative analysis across two of the major neuronal subtypes that express divergent GPCR families and the G-protein subunits Gnai2 or Gnao1, reveals significantly higher expression of endoplasmic reticulum (ER) associated genes within Gnao1 neurons. In addition, differences in ER content and prevalence of cubic membrane ER ultrastructure revealed by electron microscopy, indicate fundamental differences in ER function.