Abstract
Dietary magnesium (Mg2+) supplementation can enhance memory in young and aged rats. Memory-enhancing capacity was largely ascribed to increases in hippocampal synaptic density and elevated expression of the NR2B subunit of the NMDA-type glutamate receptor. Here we show that Mg2+ feeding also enhances long-term memory in Drosophila. Normal and Mg2+ enhanced fly memory appears independent of NMDA receptors in the mushroom body and instead requires expression of a conserved CNNM-type Mg2+-efflux transporter encoded by the unextended (uex) gene. UEX contains a putative cyclic nucleotide-binding homology domain and its mutation separates a vital role for uex from a function in memory. Moreover, UEX localization in mushroom body Kenyon Cells is altered in memory defective flies harboring mutations in cAMP-related genes. Functional imaging suggests that UEX-dependent efflux is required for slow rhythmic maintenance of Kenyon Cell Mg2+. We propose that regulated neuronal Mg2+ efflux is critical for normal and Mg2+ enhanced memory.
Article and author information
Author details
Funding
Wellcome (200846/Z/16/Z)
- Scott Waddell
European Commission (789274)
- Scott Waddell
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India
Publication history
- Received: July 22, 2020
- Accepted: November 25, 2020
- Accepted Manuscript published: November 26, 2020 (version 1)
Copyright
© 2020, Wu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 632
- Page views
-
- 162
- Downloads
-
- 0
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.