Abstract

The Spike protein of SARS-CoV-2, its receptor binding domain (RBD), and its primary receptor ACE2 are extensively glycosylated. The impact of this post-translational modification on viral entry is yet unestablished. We expressed different glycoforms of the Spike-protein and ACE2 in CRISPR-Cas9 glycoengineered cells, and developed corresponding SARS-CoV-2 pseudovirus. We observed that N- and O-glycans had only minor contribution to Spike-ACE2 binding. However, these carbohydrates played a major role in regulating viral entry. Blocking N-glycan biosynthesis at the oligomannose stage using both genetic approaches and the small molecule kifunensine dramatically reduced viral entry into ACE2 expressing HEK293T cells. Blocking O-glycan elaboration also partially blocked viral entry. Mechanistic studies suggest multiple roles for glycans during viral entry. Among them, inhibition of N-glycan biosynthesis enhanced Spike-protein proteolysis. This could reduce RBD presentation on virus, lowering binding to host ACE2 and decreasing viral entry. Overall, chemical inhibitors of glycosylation may be evaluated for COVID-19.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. All plasmids generated by the authors will be deposited at Addgene.

Article and author information

Author details

  1. Qi Yang

    Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, United States
    Competing interests
    Qi Yang, Co-author of a provisional patent application.(63/079,667).
  2. Thomas A Hughes

    Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, United States
    Competing interests
    Thomas A Hughes, Co-author of a provisional patent application.(63/079,667).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7887-6876
  3. Anju Kelkar

    Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, United States
    Competing interests
    Anju Kelkar, Co-author of a provisional patent application.(63/079,667).
  4. Xinheng Yu

    Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, United States
    Competing interests
    No competing interests declared.
  5. Kai Cheng

    Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, United States
    Competing interests
    No competing interests declared.
  6. Sheldon Park

    Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, United States
    Competing interests
    No competing interests declared.
  7. Wei-Chiao Huang

    Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, United States
    Competing interests
    No competing interests declared.
  8. Jonathan F Lovell

    Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9052-884X
  9. Sriram Neelamegham

    Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, United States
    For correspondence
    neel@buffalo.edu
    Competing interests
    Sriram Neelamegham, Co-author of a provisional patent application.(63/079,667).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1371-8500

Funding

National Institutes of Health (HL103411)

  • Sriram Neelamegham

National Institutes of Health (GM133195)

  • Sriram Neelamegham

National Institutes of Health (GM126537)

  • Sriram Neelamegham

National Institutes of Health (GM139160)

  • Sheldon Park
  • Sriram Neelamegham

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,329
    views
  • 1,381
    downloads
  • 191
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qi Yang
  2. Thomas A Hughes
  3. Anju Kelkar
  4. Xinheng Yu
  5. Kai Cheng
  6. Sheldon Park
  7. Wei-Chiao Huang
  8. Jonathan F Lovell
  9. Sriram Neelamegham
(2020)
Inhibition of SARS-CoV-2 viral entry upon blocking N- and O-glycan elaboration
eLife 9:e61552.
https://doi.org/10.7554/eLife.61552

Share this article

https://doi.org/10.7554/eLife.61552

Further reading

    1. Biochemistry and Chemical Biology
    Meina He, Yongxin Tao ... Wenli Chen
    Research Article

    Copper is an essential enzyme cofactor in bacteria, but excess copper is highly toxic. Bacteria can cope with copper stress by increasing copper resistance and initiating chemorepellent response. However, it remains unclear how bacteria coordinate chemotaxis and resistance to copper. By screening proteins that interacted with the chemotaxis kinase CheA, we identified a copper-binding repressor CsoR that interacted with CheA in Pseudomonas putida. CsoR interacted with the HPT (P1), Dimer (P3), and HATPase_c (P4) domains of CheA and inhibited CheA autophosphorylation, resulting in decreased chemotaxis. The copper-binding of CsoR weakened its interaction with CheA, which relieved the inhibition of chemotaxis by CsoR. In addition, CsoR bound to the promoter of copper-resistance genes to inhibit gene expression, and copper-binding released CsoR from the promoter, leading to increased gene expression and copper resistance. P. putida cells exhibited a chemorepellent response to copper in a CheA-dependent manner, and CsoR inhibited the chemorepellent response to copper. Besides, the CheA-CsoR interaction also existed in proteins from several other bacterial species. Our results revealed a mechanism by which bacteria coordinately regulated chemotaxis and resistance to copper by CsoR.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Jiale Zhou, Ding Zhao ... Zhanjun Li
    Research Article

    5-Methylcytosine (m5C) is one of the posttranscriptional modifications in mRNA and is involved in the pathogenesis of various diseases. However, the capacity of existing assays for accurately and comprehensively transcriptome-wide m5C mapping still needs improvement. Here, we develop a detection method named DRAM (deaminase and reader protein assisted RNA methylation analysis), in which deaminases (APOBEC1 and TadA-8e) are fused with m5C reader proteins (ALYREF and YBX1) to identify the m5C sites through deamination events neighboring the methylation sites. This antibody-free and bisulfite-free approach provides transcriptome-wide editing regions which are highly overlapped with the publicly available bisulfite-sequencing (BS-seq) datasets and allows for a more stable and comprehensive identification of the m5C loci. In addition, DRAM system even supports ultralow input RNA (10 ng). We anticipate that the DRAM system could pave the way for uncovering further biological functions of m5C modifications.