1. Chromosomes and Gene Expression
  2. Developmental Biology
Download icon

Kinetic sculpting of the seven stripes of the Drosophila even-skipped gene

  1. Augusto Berrocal
  2. Nicholas C Lammers
  3. Hernan G Garcia  Is a corresponding author
  4. Michael B Eisen  Is a corresponding author
  1. University of California, Berkeley, United States
Research Article
  • Cited 5
  • Views 1,586
  • Annotations
Cite this article as: eLife 2020;9:e61635 doi: 10.7554/eLife.61635

Abstract

We used live imaging to visualize the transcriptional dynamics of the Drosophila melanogaster even-skipped gene at single-cell and high temporal resolution as its seven stripe expression pattern forms, and developed tools to characterize and visualize how transcriptional bursting varies over time and space. We find that despite being created by the independent activity of five enhancers, even-skipped stripes are sculpted by the same kinetic phenomena: a coupled increase of burst frequency and amplitude. By tracking the position and activity of individual nuclei, we show that stripe movement is driven by the exchange of bursting nuclei from the posterior to anterior stripe flanks. Our work provides a conceptual, theoretical and computational framework for dissecting pattern formation in space and time, and reveals how the coordinated transcriptional activity of individual nuclei shape complex developmental patterns.

Data availability

All of the raw and processed data described in this paper are available on Data Dryad at doi:10.6078/D1XX33 and computational notebooks with necessary data to regenerate analyses and figures is available in File S1 and at https://github.com/mbeisen/Berrocal_2020.

The following data sets were generated

Article and author information

Author details

  1. Augusto Berrocal

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6506-9071
  2. Nicholas C Lammers

    Biophysics Graduate Group, University of California, Berkeley, Oakland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6832-6152
  3. Hernan G Garcia

    Molecular and Cell Biology, Physics, University of California, Berkeley, Berkeley, United States
    For correspondence
    hggarcia@berkeley.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5212-3649
  4. Michael B Eisen

    Department of Molecular and Cell Biology and HHMI, University of California, Berkeley, Berkeley, United States
    For correspondence
    mbeisen@gmail.com
    Competing interests
    Michael B Eisen, Editor-in-Chief, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7528-738X

Funding

Howard Hughes Medical Institute (Investigator Award)

  • Michael B Eisen

National Science Foundation (1652236)

  • Hernan G Garcia

National Institutes of Health (DP2-OD024541-01)

  • Hernan G Garcia

National Institutes of Health (5T32HG000047-18)

  • Nicholas C Lammers

University of California Institute for Mexico and the United States (NA)

  • Augusto Berrocal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Robert H Singer, Albert Einstein College of Medicine, United States

Publication history

  1. Received: July 31, 2020
  2. Accepted: October 9, 2020
  3. Accepted Manuscript published: December 10, 2020 (version 1)
  4. Version of Record published: February 5, 2021 (version 2)

Copyright

© 2020, Berrocal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,586
    Page views
  • 217
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Benoit Roch et al.
    Research Article Updated

    We developed an Xrcc4M61R separation of function mouse line to overcome the embryonic lethality of Xrcc4-deficient mice. XRCC4M61R protein does not interact with Xlf, thus obliterating XRCC4-Xlf filament formation while preserving the ability to stabilize DNA ligase IV. X4M61R mice, which are DNA repair deficient, phenocopy the Nhej1-/- (known as Xlf -/-) setting with a minor impact on the development of the adaptive immune system. The core non-homologous end-joining (NHEJ) DNA repair factor XRCC4 is therefore not mandatory for V(D)J recombination aside from its role in stabilizing DNA ligase IV. In contrast, Xrcc4M61R mice crossed on Paxx-/-, Nhej1-/-, or Atm-/- backgrounds are severely immunocompromised, owing to aborted V(D)J recombination as in Xlf-Paxx and Xlf-Atm double Knock Out (DKO) settings. Furthermore, massive apoptosis of post-mitotic neurons causes embryonic lethality of Xrcc4M61R -Nhej1-/- double mutants. These in vivo results reveal new functional interplays between XRCC4 and PAXX, ATM and Xlf in mouse development and provide new insights into the understanding of the clinical manifestations of human XRCC4-deficient condition, in particular its absence of immune deficiency.

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Zelin Liu et al.
    Tools and Resources

    Circular RNAs (circRNAs) act through multiple mechanisms via their sequence features to fine-tune gene expression networks. Due to overlapping sequences with linear cognates, identifying internal sequences of circRNAs remains a challenge, which hinders a comprehensive understanding of circRNA functions and mechanisms. Here, based on rolling circular reverse transcription (RCRT) and nanopore sequencing, we developed circFL-seq, a full-length circRNA sequencing method, to profile circRNA at the isoform level. With a customized computational pipeline to directly identify full-length sequences from rolling circular reads, we reconstructed 77,606 high-quality circRNAs from seven human cell lines and two human tissues. circFL-seq benefits from rolling circles and long-read sequencing, and the results showed more than tenfold enrichment of circRNA reads and advantages for both detection and quantification at the isoform level compared to those for short-read RNA sequencing. The concordance of the RT-qPCR and circFL-seq results for the identification of differential alternative splicing suggested wide application prospects for functional studies of internal variants in circRNAs. Moreover, the detection of fusion circRNAs at the omics scale may further expand the application of circFL-seq. Together, the accurate identification and quantification of full-length circRNAs make circFL-seq a potential tool for large-scale screening of functional circRNAs.