Kinetic sculpting of the seven stripes of the Drosophila even-skipped gene

  1. Augusto Berrocal
  2. Nicholas C Lammers
  3. Hernan G Garcia  Is a corresponding author
  4. Michael B Eisen  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

We used live imaging to visualize the transcriptional dynamics of the Drosophila melanogaster even-skipped gene at single-cell and high temporal resolution as its seven stripe expression pattern forms, and developed tools to characterize and visualize how transcriptional bursting varies over time and space. We find that despite being created by the independent activity of five enhancers, even-skipped stripes are sculpted by the same kinetic phenomena: a coupled increase of burst frequency and amplitude. By tracking the position and activity of individual nuclei, we show that stripe movement is driven by the exchange of bursting nuclei from the posterior to anterior stripe flanks. Our work provides a conceptual, theoretical and computational framework for dissecting pattern formation in space and time, and reveals how the coordinated transcriptional activity of individual nuclei shape complex developmental patterns.

Data availability

All of the raw and processed data described in this paper are available on Data Dryad at doi:10.6078/D1XX33 and computational notebooks with necessary data to regenerate analyses and figures is available in File S1 and at https://github.com/mbeisen/Berrocal_2020.

The following data sets were generated

Article and author information

Author details

  1. Augusto Berrocal

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6506-9071
  2. Nicholas C Lammers

    Biophysics Graduate Group, University of California, Berkeley, Oakland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6832-6152
  3. Hernan G Garcia

    Molecular and Cell Biology, Physics, University of California, Berkeley, Berkeley, United States
    For correspondence
    hggarcia@berkeley.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5212-3649
  4. Michael B Eisen

    Department of Molecular and Cell Biology and HHMI, University of California, Berkeley, Berkeley, United States
    For correspondence
    mbeisen@gmail.com
    Competing interests
    Michael B Eisen, Editor-in-Chief, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7528-738X

Funding

Howard Hughes Medical Institute (Investigator Award)

  • Michael B Eisen

National Science Foundation (1652236)

  • Hernan G Garcia

National Institutes of Health (DP2-OD024541-01)

  • Hernan G Garcia

National Institutes of Health (5T32HG000047-18)

  • Nicholas C Lammers

University of California Institute for Mexico and the United States (NA)

  • Augusto Berrocal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Berrocal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,452
    views
  • 361
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Augusto Berrocal
  2. Nicholas C Lammers
  3. Hernan G Garcia
  4. Michael B Eisen
(2020)
Kinetic sculpting of the seven stripes of the Drosophila even-skipped gene
eLife 9:e61635.
https://doi.org/10.7554/eLife.61635

Share this article

https://doi.org/10.7554/eLife.61635

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.