Abstract

When bacterial cells come in contact, antagonism mediated by the delivery of toxins frequently ensues. The potential for such encounters to have long-term beneficial consequences in recipient cells has not been investigated. Here we examined the effects of intoxication by DddA, a cytosine deaminase delivered via the type VI secretion system (T6SS) of Burkholderia cenocepacia. Despite its killing potential, we observed that several bacterial species resist DddA and instead accumulate mutations. These mutations can lead to the acquisition of antibiotic resistance, indicating that even in the absence of killing, interbacterial antagonism can have profound consequences on target populations. Investigation of additional toxins from the deaminase superfamily revealed that mutagenic activity is a common feature of these proteins, including a representative we show targets single-stranded DNA and displays a markedly divergent structure. Our findings suggest that a surprising consequence of antagonistic interactions between bacteria could be the promotion of adaptation via the action of directly mutagenic toxins.

Data availability

Diffraction data have been deposited in PDB under the accession code 7JTU.Sequencing data have been deposited at the NCBI Trace and Short-Read Archive (SRA) under BioProject accession ID PRJNA659516.

The following data sets were generated

Article and author information

Author details

  1. Marcos H de Moraes

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. FoSheng Hsu

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dean Huang

    Department of Physics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1235-5699
  4. Dustin E Bosch

    Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jun Zeng

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew C Radey

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Noah Simon

    Biostatistics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hannah E Ledvina

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jacob P Frick

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Paul A Wiggins

    Department of Physics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. S Brook Peterson

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2648-0965
  12. Joseph D Mougous

    Department of Microbiology, University of Washington, Seattle, United States
    For correspondence
    mougous@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5417-4861

Funding

National Institutes of Health (GM128191)

  • Paul A Wiggins

National Institutes of Health (AI080609)

  • Joseph D Mougous

Howard Hughes Medical Institute

  • Joseph D Mougous

Cystic Fibrosis Foundation (DEMORA18F0)

  • Marcos H de Moraes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, de Moraes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,293
    views
  • 885
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marcos H de Moraes
  2. FoSheng Hsu
  3. Dean Huang
  4. Dustin E Bosch
  5. Jun Zeng
  6. Matthew C Radey
  7. Noah Simon
  8. Hannah E Ledvina
  9. Jacob P Frick
  10. Paul A Wiggins
  11. S Brook Peterson
  12. Joseph D Mougous
(2021)
An interbacterial DNA deaminase toxin directly mutagenizes surviving target populations
eLife 10:e62967.
https://doi.org/10.7554/eLife.62967

Share this article

https://doi.org/10.7554/eLife.62967

Further reading

    1. Evolutionary Biology
    2. Epidemiology and Global Health
    3. Microbiology and Infectious Disease
    4. Genetics and Genomics
    Edited by George H Perry et al.
    Collection

    eLife is pleased to present a Special Issue to highlight recent advances in the growing and increasingly interdisciplinary field of evolutionary medicine.

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.