Mixed cytomegalovirus genotypes in HIV positive mothers show compartmentalization and distinct patterns of transmission to infants

  1. Juanita Pang
  2. Jennifer A Slyker
  3. Sunando Roy
  4. Josephine Bryant
  5. Claire Atkinson
  6. Juliana Cudini
  7. Carey Farquhar
  8. Paul Griffiths
  9. James Kiarie
  10. Sofia Morfopoulou
  11. Alison C Roxby
  12. Helena Tutil
  13. Rachel Williams
  14. Soren Gantt
  15. Richard A Goldstein
  16. Judith Breuer  Is a corresponding author
  1. University College London, United Kingdom
  2. University of Washington, United States
  3. University College of London, United Kingdom
  4. University of Nairobi, Kenya
  5. University of Montréal, Canada

Abstract

Cytomegalovirus (CMV) is the commonest cause of congenital infection (cCMVi) and particularly so among infants born to HIV-infected women. Studies of cCMVi pathogenesis are complicated by the presence of multiple infecting maternal CMV strains, especially in HIV-positive women, and the large, recombinant CMV genome. Using newly developed tools to reconstruct CMV haplotypes, we demonstrate anatomic CMV compartmentalization in five HIV-infected mothers and identify the possibility of congenitally transmitted genotypes in three of their infants. A single CMV strain was transmitted in each congenitally infected case, and all were closely related to those that predominate in the cognate maternal cervix. Compared to non-transmitted strains, these congenitally transmitted CMV strains showed statistically significant similarities in 19 genes associated with tissue-tropism and immunomodulation. In all infants, incident superinfections with distinct strains from breast milk were captured during follow-up. The results represent potentially important new insights into the virologic determinants of early CMV infection.

Data availability

Sequence reads have been deposited in NCBI Sequence Read Archive under BioProject ID PRJNA605798.

Article and author information

Author details

  1. Juanita Pang

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Jennifer A Slyker

    Department of Global Health, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sunando Roy

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Josephine Bryant

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Claire Atkinson

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Juliana Cudini

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Carey Farquhar

    Departments of Global Health, Epidemiology, Medicine (Div. Allergy and Infectious Diseases), University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Paul Griffiths

    University College of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. James Kiarie

    Department of Obstetrics and Gynaecology, University of Nairobi, Nairobi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  10. Sofia Morfopoulou

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Alison C Roxby

    Department of Global Health, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Helena Tutil

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Rachel Williams

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Soren Gantt

    Infectious Diseases and Immunology, University of Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5743-3606
  15. Richard A Goldstein

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5148-4672
  16. Judith Breuer

    Division of Infection and Immunity, University College London, London, United Kingdom
    For correspondence
    j.breuer@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8246-0534

Funding

EUFP7 (304875)

  • Judith Breuer

UCL/UCLH NIHR Biomedical Research Centre

  • Judith Breuer

Sir Henry Wellcome Fellowship

  • Sofia Morfopoulou

Sir Henry Wellcome Fellowships

  • Josephine Bryant

Wellcome Trust (204870)

  • Paul Griffiths

NIH National Institute of Allergy and Infectious Diseases (AI087369)

  • Jennifer A Slyker

NIH National Institute of Allergy and Infectious Diseases (AI027757)

  • Jennifer A Slyker

NIH National Institute of Allergy and Infectious Diseases (AI076105)

  • Carey Farquhar

NIH National Institute of Allergy and Infectious Diseases (AI087399)

  • Carey Farquhar

National Institute of Child Health and Human Development (HD057773-01)

  • Carey Farquhar

National Institute of Child Health and Human Development (HD054314)

  • Carey Farquhar

Rosetreees Trust PhD Studentship (M876)

  • Juanita Pang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Pang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,093
    views
  • 160
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juanita Pang
  2. Jennifer A Slyker
  3. Sunando Roy
  4. Josephine Bryant
  5. Claire Atkinson
  6. Juliana Cudini
  7. Carey Farquhar
  8. Paul Griffiths
  9. James Kiarie
  10. Sofia Morfopoulou
  11. Alison C Roxby
  12. Helena Tutil
  13. Rachel Williams
  14. Soren Gantt
  15. Richard A Goldstein
  16. Judith Breuer
(2020)
Mixed cytomegalovirus genotypes in HIV positive mothers show compartmentalization and distinct patterns of transmission to infants
eLife 9:e63199.
https://doi.org/10.7554/eLife.63199

Share this article

https://doi.org/10.7554/eLife.63199

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.