The genetic landscape for amyloid beta fibril nucleation accurately discriminates familial Alzheimer's disease mutations

  1. Mireia Seuma
  2. Andre Faure
  3. Marta Badia
  4. Ben Lehner  Is a corresponding author
  5. Benedetta Bolognesi  Is a corresponding author
  1. IBEC, Spain
  2. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Spain

Abstract

Plaques of the amyloid beta (Aβ) peptide are a pathological hallmark of Alzheimer's Disease (AD), the most common form of dementia. Mutations in Aβ also cause familial forms of AD (fAD). Here we use deep mutational scanning to quantify the effects of >14,000 mutations on the aggregation of Aβ. The resulting genetic landscape reveals mechanistic insights into fibril nucleation, including the importance of charge and gatekeeper residues in the disordered region outside of the amyloid core in preventing nucleation. Strikingly, unlike computational predictors and previous measurements, the empirical nucleation scores accurately identify all known dominant fAD mutations in AB42, genetically validating that the mechanism of nucleation in a cell-based assay is likely to be very similar to the mechanism that causes the human disease. These results provide the first comprehensive atlas of how mutations alter the formation of any amyloid fibril and a resource for the interpretation of genetic variation in Aβ.

Data availability

Raw sequencing data and the processed data table (Supplementary file 3) have been deposited in NCBI's Gene Expression Omnibus (GEO) as record GSE151147. All code used for data analysis is available at https://github.com/BEBlab

The following data sets were generated

Article and author information

Author details

  1. Mireia Seuma

    IBEC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Andre Faure

    Systems Biology, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4471-5994
  3. Marta Badia

    IBEC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Ben Lehner

    Systems Biology, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    For correspondence
    ben.lehner@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8817-1124
  5. Benedetta Bolognesi

    IBEC, Barcelona, Spain
    For correspondence
    bbolognesi@ibecbarcelona.eu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ministerio de Ciencia, Innovación y Universidades (RTI2018-101491-A-I00)

  • Benedetta Bolognesi

Ministerio de Ciencia, Innovación y Universidades (BFU2017-89488-P)

  • Ben Lehner

H2020 European Research Council (616434)

  • Ben Lehner

AGAUR (SGR 1322)

  • Ben Lehner

Agència de Gestió d'Ajuts Universitaris i de Recerca (2019FI_B 01311)

  • Mireia Seuma

Fondation Bettencourt Schueller (Prize)

  • Ben Lehner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patrik Verstreken, KU Leuven, Belgium

Version history

  1. Received: September 23, 2020
  2. Accepted: February 1, 2021
  3. Accepted Manuscript published: February 1, 2021 (version 1)
  4. Version of Record published: March 9, 2021 (version 2)

Copyright

© 2021, Seuma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,949
    views
  • 667
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mireia Seuma
  2. Andre Faure
  3. Marta Badia
  4. Ben Lehner
  5. Benedetta Bolognesi
(2021)
The genetic landscape for amyloid beta fibril nucleation accurately discriminates familial Alzheimer's disease mutations
eLife 10:e63364.
https://doi.org/10.7554/eLife.63364

Share this article

https://doi.org/10.7554/eLife.63364

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.