1. Computational and Systems Biology
  2. Genetics and Genomics
Download icon

The genetic landscape for amyloid beta fibril nucleation accurately discriminates familial Alzheimer's disease mutations

  1. Mireia Seuma
  2. Andre Faure
  3. Marta Badia
  4. Ben Lehner  Is a corresponding author
  5. Benedetta Bolognesi  Is a corresponding author
  1. IBEC, Spain
  2. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Spain
Research Article
  • Cited 1
  • Views 2,014
  • Annotations
Cite this article as: eLife 2021;10:e63364 doi: 10.7554/eLife.63364

Abstract

Plaques of the amyloid beta (Aβ) peptide are a pathological hallmark of Alzheimer's Disease (AD), the most common form of dementia. Mutations in Aβ also cause familial forms of AD (fAD). Here we use deep mutational scanning to quantify the effects of >14,000 mutations on the aggregation of Aβ. The resulting genetic landscape reveals mechanistic insights into fibril nucleation, including the importance of charge and gatekeeper residues in the disordered region outside of the amyloid core in preventing nucleation. Strikingly, unlike computational predictors and previous measurements, the empirical nucleation scores accurately identify all known dominant fAD mutations in AB42, genetically validating that the mechanism of nucleation in a cell-based assay is likely to be very similar to the mechanism that causes the human disease. These results provide the first comprehensive atlas of how mutations alter the formation of any amyloid fibril and a resource for the interpretation of genetic variation in Aβ.

Data availability

Raw sequencing data and the processed data table (Supplementary file 3) have been deposited in NCBI's Gene Expression Omnibus (GEO) as record GSE151147. All code used for data analysis is available at https://github.com/BEBlab

The following data sets were generated

Article and author information

Author details

  1. Mireia Seuma

    IBEC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Andre Faure

    Systems Biology, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4471-5994
  3. Marta Badia

    IBEC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Ben Lehner

    Systems Biology, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    For correspondence
    ben.lehner@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8817-1124
  5. Benedetta Bolognesi

    IBEC, Barcelona, Spain
    For correspondence
    bbolognesi@ibecbarcelona.eu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ministerio de Ciencia, Innovación y Universidades (RTI2018-101491-A-I00)

  • Benedetta Bolognesi

Ministerio de Ciencia, Innovación y Universidades (BFU2017-89488-P)

  • Ben Lehner

H2020 European Research Council (616434)

  • Ben Lehner

AGAUR (SGR 1322)

  • Ben Lehner

Agència de Gestió d'Ajuts Universitaris i de Recerca (2019FI_B 01311)

  • Mireia Seuma

Fondation Bettencourt Schueller (Prize)

  • Ben Lehner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patrik Verstreken, KU Leuven, Belgium

Publication history

  1. Received: September 23, 2020
  2. Accepted: February 1, 2021
  3. Accepted Manuscript published: February 1, 2021 (version 1)
  4. Version of Record published: March 9, 2021 (version 2)

Copyright

© 2021, Seuma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,014
    Page views
  • 332
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Yanmin Zhang et al.
    Research Article Updated

    Antibiotic resistance is a worldwide challenge. A potential approach to block resistance is to simultaneously inhibit WT and known escape variants of the target bacterial protein. Here, we applied an integrated computational and experimental approach to discover compounds that inhibit both WT and trimethoprim (TMP) resistant mutants of E. coli dihydrofolate reductase (DHFR). We identified a novel compound (CD15-3) that inhibits WT DHFR and its TMP resistant variants L28R, P21L and A26T with IC50 50–75 µM against WT and TMP-resistant strains. Resistance to CD15-3 was dramatically delayed compared to TMP in in vitro evolution. Whole genome sequencing of CD15-3-resistant strains showed no mutations in the target folA locus. Rather, gene duplication of several efflux pumps gave rise to weak (about twofold increase in IC50) resistance against CD15-3. Altogether, our results demonstrate the promise of strategy to develop evolution drugs - compounds which constrain evolutionary escape routes in pathogens.

    1. Computational and Systems Biology
    2. Medicine
    Homa MohammadiPeyhani et al.
    Tools and Resources

    The discovery of a drug requires over a decade of intensive research and financial investments – and still has a high risk of failure. To reduce this burden, we developed the NICEdrug.ch resource, which incorporates 250,000 bioactive molecules, and studied their enzymatic metabolic targets, fate, and toxicity. NICEdrug.ch includes a unique fingerprint that identifies reactive similarities between drug–drug and drug–metabolite pairs. We validated the application, scope, and performance of NICEdrug.ch over similar methods in the field on golden standard datasets describing drugs and metabolites sharing reactivity, drug toxicities, and drug targets. We use NICEdrug.ch to evaluate inhibition and toxicity by the anticancer drug 5-fluorouracil, and suggest avenues to alleviate its side effects. We propose shikimate 3-phosphate for targeting liver-stage malaria with minimal impact on the human host cell. Finally, NICEdrug.ch suggests over 1300 candidate drugs and food molecules to target COVID-19 and explains their inhibitory mechanism for further experimental screening. The NICEdrug.ch database is accessible online to systematically identify the reactivity of small molecules and druggable enzymes with practical applications in lead discovery and drug repurposing.