Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring AMR bacterial pneumonia

Abstract

Here we describe the case of a COVID-19 patient who developed recurring ventilator-associated pneumonia caused by Pseudomonas aeruginosa that acquired increasing levels of antimicrobial resistance (AMR) in response to treatment. Metagenomic analysis revealed the AMR genotype, while immunological analysis revealed massive and escalating levels of T-cell activation. These were both SARS-CoV-2 and P. aeruginosa specific, and bystander activated, which may have contributed to this patient's persistent symptoms and radiological changes.

Data availability

Human-filtered sequencing data for this study have been deposited in the European Nucleotide Archive (ENA) at EMBL-EBI under accession PRJEB40239.

The following data sets were generated

Article and author information

Author details

  1. Michaela Gregorova

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1605-0558
  2. Daniel Morse

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Tarcisio Brignoli

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Joseph Steventon

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Fergus Hamilton

    Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Mahableshwar Albur

    Pathology, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9792-7280
  7. David Arnold

    Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3158-7740
  8. Matthew Thomas

    Intensive Care Unit, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Alice Halliday

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Holly Baum

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Christopher Rice

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Matthew B Avison

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Andrew D Davidson

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1136-4008
  14. Marianna Santopaolo

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Elizabeth Oliver

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Anu Goenka

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Adam Finn

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. Linda Wooldridge

    Bristol Veterinary School in the Faculty of Health Sciences, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Borko Amulic

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  20. Rosemary J Boyton

    Lung Immunology Group, Section of Infectious Disease and Immunity, Department of Medicine, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Centre for Respiratory Infection Imperial College, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  21. Daniel M Altmann

    Human Disease Immunogenetics Group, Section of Infectious Disease and Immunity, Department of Medicine, Imperial College London W12 ONN, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  22. David K Butler

    Lung Immunology Group, Section of Infectious Disease and Immunity, Department of Medicine, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Centre for Respiratory Infection Imperial Coll, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  23. Claire McMurray

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  24. Joanna Stockton

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  25. Sam Nicholls

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  26. Charles Cooper

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  27. Nicholas Loman

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  28. Michael J Cox

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  29. Laura Rivino

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    For correspondence
    laura.rivino@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  30. Ruth C Massey

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    For correspondence
    ruth.massey@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8154-4039

Funding

Southmead Hospital Charity

  • Fergus Hamilton

Wellcome Trust (212258/Z/18/Z)

  • Ruth C Massey

Elizabeth Blackwell Institute

  • Laura Rivino

UKRI (MR/S019553/1)

  • Rosemary J Boyton

UKRI (MR/R02622X/1)

  • Daniel M Altmann

Cystic Fibrosis Trust (CF Trust SRC 015)

  • David K Butler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anurag Agrawal, CSIR Institute of Genomics and Integrative Biology, India

Ethics

Human subjects: The patient was enrolled onto the DISCOVER study (Diagnostic and Severity markers of COVID-19 to Enable Rapid triage study), a single centre prospective study recruiting consecutive patients admitted with COVID-19, from 30.03.2020 until present (Ethics approval via South Yorkshire REC: 20/YH/0121, CRN approval no: 45469). Blood/serum samples from pre-pandemic healthy controls and asymptomatic healthy controls were obtained under the Bristol Biobank (NHS Research Ethics Committee approval ref 14/WA/1253).

Version history

  1. Received: September 24, 2020
  2. Accepted: December 16, 2020
  3. Accepted Manuscript published: December 17, 2020 (version 1)
  4. Version of Record published: December 31, 2020 (version 2)

Copyright

© 2020, Gregorova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,005
    views
  • 339
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michaela Gregorova
  2. Daniel Morse
  3. Tarcisio Brignoli
  4. Joseph Steventon
  5. Fergus Hamilton
  6. Mahableshwar Albur
  7. David Arnold
  8. Matthew Thomas
  9. Alice Halliday
  10. Holly Baum
  11. Christopher Rice
  12. Matthew B Avison
  13. Andrew D Davidson
  14. Marianna Santopaolo
  15. Elizabeth Oliver
  16. Anu Goenka
  17. Adam Finn
  18. Linda Wooldridge
  19. Borko Amulic
  20. Rosemary J Boyton
  21. Daniel M Altmann
  22. David K Butler
  23. Claire McMurray
  24. Joanna Stockton
  25. Sam Nicholls
  26. Charles Cooper
  27. Nicholas Loman
  28. Michael J Cox
  29. Laura Rivino
  30. Ruth C Massey
(2020)
Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring AMR bacterial pneumonia
eLife 9:e63430.
https://doi.org/10.7554/eLife.63430

Share this article

https://doi.org/10.7554/eLife.63430

Further reading

    1. Microbiology and Infectious Disease
    Ryan Thiermann, Michael Sandler ... Suckjoon Jun
    Tools and Resources

    Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, ‘what you put is what you get’ (WYPIWYG) – that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.

    1. Microbiology and Infectious Disease
    Nguyen Thi Khanh Nhu, Minh-Duy Phan ... Mark A Schembri
    Research Article

    Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974–2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.