Viral load and contact heterogeneity predict SARS-CoV-2 transmission and super-spreading events

  1. Ashish Goyal
  2. Daniel B Reeves
  3. E Fabian Cardozo-Ojeda
  4. Joshua T Schiffer  Is a corresponding author
  5. Bryan T Mayer
  1. Fred Hutchinson Cancer Research Center, United States

Abstract

SARS-CoV-2 is difficult to contain because many transmissions occur during pre-symptomatic infection. Unlike influenza, most SARS-CoV-2 infected people do not transmit while a small percentage infect large numbers of people. We designed mathematical models which link observed viral loads with epidemiologic features of each virus, including distribution of transmissions attributed to each infected person and duration between symptom onset in the transmitter and secondarily infected person. We identify that people infected with SARS-CoV-2 or influenza can be highly contagious for less than one day, congruent with peak viral load. SARS-CoV-2 super-spreader events occur when an infected person is shedding at a very high viral load and has a high number of exposed contacts. The higher predisposition of SARS-CoV-2 towards super-spreading events cannot be attributed to additional weeks of shedding relative to influenza. Rather, a person infected with SARS-CoV-2 exposes more people within equivalent physical contact networks, likely due to aerosolization.

Data availability

The original data and code is shared at: https://github.com/ashish2goyal/SARS_CoV_2_Super_Spreader_Event

Article and author information

Author details

  1. Ashish Goyal

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  2. Daniel B Reeves

    Vaccine and Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5684-9538
  3. E Fabian Cardozo-Ojeda

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  4. Joshua T Schiffer

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    jschiffe@fredhutch.org
    Competing interests
    Joshua T Schiffer, Reviewing editor, eLifeIs on the trial planning committee for a Gilead funded trial of remdesivir but is not reimbursed for this activity.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2598-1621
  5. Bryan T Mayer

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.

Funding

National Institute of Allergy and Infectious Diseases (R01 AI121129-05S1)

  • Joshua T Schiffer

Council of State and Territorial Epidemiologists (Inform Public Health Decision Making Funding Opportunity)

  • Joshua T Schiffer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Goyal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,800
    views
  • 980
    downloads
  • 142
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ashish Goyal
  2. Daniel B Reeves
  3. E Fabian Cardozo-Ojeda
  4. Joshua T Schiffer
  5. Bryan T Mayer
(2021)
Viral load and contact heterogeneity predict SARS-CoV-2 transmission and super-spreading events
eLife 10:e63537.
https://doi.org/10.7554/eLife.63537

Share this article

https://doi.org/10.7554/eLife.63537

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    3. Epidemiology and Global Health
    4. Immunology and Inflammation
    Edited by Jos WM van der Meer et al.
    Collection

    eLife has published articles on a wide range of infectious diseases, including COVID-19, influenza, tuberculosis, HIV/AIDS, malaria and typhoid fever.

    1. Epidemiology and Global Health
    2. Evolutionary Biology
    Renan Maestri, Benoît Perez-Lamarque ... Hélène Morlon
    Research Article

    Several coronaviruses infect humans, with three, including the SARS-CoV2, causing diseases. While coronaviruses are especially prone to induce pandemics, we know little about their evolutionary history, host-to-host transmissions, and biogeography. One of the difficulties lies in dating the origination of the family, a particularly challenging task for RNA viruses in general. Previous cophylogenetic tests of virus-host associations, including in the Coronaviridae family, have suggested a virus-host codiversification history stretching many millions of years. Here, we establish a framework for robustly testing scenarios of ancient origination and codiversification versus recent origination and diversification by host switches. Applied to coronaviruses and their mammalian hosts, our results support a scenario of recent origination of coronaviruses in bats and diversification by host switches, with preferential host switches within mammalian orders. Hotspots of coronavirus diversity, concentrated in East Asia and Europe, are consistent with this scenario of relatively recent origination and localized host switches. Spillovers from bats to other species are rare, but have the highest probability to be towards humans than to any other mammal species, implicating humans as the evolutionary intermediate host. The high host-switching rates within orders, as well as between humans, domesticated mammals, and non-flying wild mammals, indicates the potential for rapid additional spreading of coronaviruses across the world. Our results suggest that the evolutionary history of extant mammalian coronaviruses is recent, and that cases of long-term virus–host codiversification have been largely over-estimated.