Mapping the functional landscape of the receptor binding domain of T7 bacteriophage by deep mutational scanning

  1. Phil Huss
  2. Anthony Meger
  3. Megan Leander
  4. Kyle K Nishikawa
  5. Srivatsan Raman  Is a corresponding author
  1. University of Wisconsin-Madison, United States

Abstract

The interaction between a bacteriophage and its host is mediated by the phage's receptor binding protein (RBP). Despite its fundamental role in governing phage activity and host range, molecular rules of RBP function remain a mystery. Here, we systematically dissect the functional role of every residue in the tip domain of T7 phage RBP (1660 variants) by developing a high-throughput, locus-specific, phage engineering method. This rich dataset allowed us to cross compare functional profiles across hosts to precisely identify regions of functional importance, many which were previously unknown. Substitution patterns showed host-specific differences in position and physicochemical properties of mutations, revealing molecular adaptation to individual hosts. We discovered gain-of-function variants against resistant hosts and host-constricting variants that eliminated certain hosts. To demonstrate therapeutic utility, we engineered highly active T7 variants against urinary tract pathogen. Our approach presents a generalized framework for characterizing sequence-function relationships in many phage-bacterial systems.

Data availability

Source code has been deposited on github here: https://github.com/raman-lab/oracle.Raw NGS data is publicly available through our institutional repository UW Box here:https://uwmadison.box.com/s/7fa1mk7hcznf9unhzubzey9h1un8wrbv.Other data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3, 4 and 6.

Article and author information

Author details

  1. Phil Huss

    Biochemistry, Microbiology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    Phil Huss, P.H and S.R have filed a provisional patent application on this technology (patent application number WIS0055US)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4064-9333
  2. Anthony Meger

    Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  3. Megan Leander

    Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  4. Kyle K Nishikawa

    Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  5. Srivatsan Raman

    Biochemistry, University of Wisconsin-Madison, Madison, United States
    For correspondence
    sraman4@wisc.edu
    Competing interests
    Srivatsan Raman, P.H and S.R have filed a provisional patent application on this technology (patent application number WIS0055US). S.R is on the scientific advisory board of MAP/PATH LLC..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2461-1589

Funding

U.S. Department of Agriculture

  • Srivatsan Raman

Bill and Melinda Gates Foundation

  • Srivatsan Raman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Huss et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,929
    views
  • 795
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Phil Huss
  2. Anthony Meger
  3. Megan Leander
  4. Kyle K Nishikawa
  5. Srivatsan Raman
(2021)
Mapping the functional landscape of the receptor binding domain of T7 bacteriophage by deep mutational scanning
eLife 10:e63775.
https://doi.org/10.7554/eLife.63775

Share this article

https://doi.org/10.7554/eLife.63775

Further reading

    1. Biochemistry and Chemical Biology
    Nelson García-Vázquez, Tania J González-Robles ... Michele Pagano
    Research Article

    In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1–CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1–CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1’s role in cell cycle control and oncogenesis beyond RB phosphorylation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.