Mapping the functional landscape of the receptor binding domain of T7 bacteriophage by deep mutational scanning

  1. Phil Huss
  2. Anthony Meger
  3. Megan Leander
  4. Kyle K Nishikawa
  5. Srivatsan Raman  Is a corresponding author
  1. University of Wisconsin-Madison, United States

Abstract

The interaction between a bacteriophage and its host is mediated by the phage's receptor binding protein (RBP). Despite its fundamental role in governing phage activity and host range, molecular rules of RBP function remain a mystery. Here, we systematically dissect the functional role of every residue in the tip domain of T7 phage RBP (1660 variants) by developing a high-throughput, locus-specific, phage engineering method. This rich dataset allowed us to cross compare functional profiles across hosts to precisely identify regions of functional importance, many which were previously unknown. Substitution patterns showed host-specific differences in position and physicochemical properties of mutations, revealing molecular adaptation to individual hosts. We discovered gain-of-function variants against resistant hosts and host-constricting variants that eliminated certain hosts. To demonstrate therapeutic utility, we engineered highly active T7 variants against urinary tract pathogen. Our approach presents a generalized framework for characterizing sequence-function relationships in many phage-bacterial systems.

Data availability

Source code has been deposited on github here: https://github.com/raman-lab/oracle.Raw NGS data is publicly available through our institutional repository UW Box here:https://uwmadison.box.com/s/7fa1mk7hcznf9unhzubzey9h1un8wrbv.Other data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3, 4 and 6.

Article and author information

Author details

  1. Phil Huss

    Biochemistry, Microbiology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    Phil Huss, P.H and S.R have filed a provisional patent application on this technology (patent application number WIS0055US)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4064-9333
  2. Anthony Meger

    Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  3. Megan Leander

    Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  4. Kyle K Nishikawa

    Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  5. Srivatsan Raman

    Biochemistry, University of Wisconsin-Madison, Madison, United States
    For correspondence
    sraman4@wisc.edu
    Competing interests
    Srivatsan Raman, P.H and S.R have filed a provisional patent application on this technology (patent application number WIS0055US). S.R is on the scientific advisory board of MAP/PATH LLC..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2461-1589

Funding

U.S. Department of Agriculture

  • Srivatsan Raman

Bill and Melinda Gates Foundation

  • Srivatsan Raman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Huss et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,421
    views
  • 759
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Phil Huss
  2. Anthony Meger
  3. Megan Leander
  4. Kyle K Nishikawa
  5. Srivatsan Raman
(2021)
Mapping the functional landscape of the receptor binding domain of T7 bacteriophage by deep mutational scanning
eLife 10:e63775.
https://doi.org/10.7554/eLife.63775

Share this article

https://doi.org/10.7554/eLife.63775

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Vineeth Vengayil, Shreyas Niphadkar ... Sunil Laxman
    Research Article

    Many cells in high glucose repress mitochondrial respiration, as observed in the Crabtree and Warburg effects. Our understanding of biochemical constraints for mitochondrial activation is limited. Using a Saccharomyces cerevisiae screen, we identified the conserved deubiquitinase Ubp3 (Usp10), as necessary for mitochondrial repression. Ubp3 mutants have increased mitochondrial activity despite abundant glucose, along with decreased glycolytic enzymes, and a rewired glucose metabolic network with increased trehalose production. Utilizing ∆ubp3 cells, along with orthogonal approaches, we establish that the high glycolytic flux in glucose continuously consumes free Pi. This restricts mitochondrial access to inorganic phosphate (Pi), and prevents mitochondrial activation. Contrastingly, rewired glucose metabolism with enhanced trehalose production and reduced GAPDH (as in ∆ubp3 cells) restores Pi. This collectively results in increased mitochondrial Pi and derepression, while restricting mitochondrial Pi transport prevents activation. We therefore suggest that glycolytic flux-dependent intracellular Pi budgeting is a key constraint for mitochondrial repression.

    1. Biochemistry and Chemical Biology
    Luca Unione, Jesús Jiménez-Barbero
    Insight

    Glycans play an important role in modulating the interactions between natural killer cells and antibodies to fight pathogens and harmful cells.