1. Biochemistry and Chemical Biology
Download icon

Mapping the functional landscape of the receptor binding domain of T7 bacteriophage by deep mutational scanning

  1. Phil Huss
  2. Anthony Meger
  3. Megan Leander
  4. Kyle K Nishikawa
  5. Srivatsan Raman  Is a corresponding author
  1. University of Wisconsin-Madison, United States
Research Article
  • Cited 0
  • Views 789
  • Annotations
Cite this article as: eLife 2021;10:e63775 doi: 10.7554/eLife.63775

Abstract

The interaction between a bacteriophage and its host is mediated by the phage's receptor binding protein (RBP). Despite its fundamental role in governing phage activity and host range, molecular rules of RBP function remain a mystery. Here, we systematically dissect the functional role of every residue in the tip domain of T7 phage RBP (1660 variants) by developing a high-throughput, locus-specific, phage engineering method. This rich dataset allowed us to cross compare functional profiles across hosts to precisely identify regions of functional importance, many which were previously unknown. Substitution patterns showed host-specific differences in position and physicochemical properties of mutations, revealing molecular adaptation to individual hosts. We discovered gain-of-function variants against resistant hosts and host-constricting variants that eliminated certain hosts. To demonstrate therapeutic utility, we engineered highly active T7 variants against urinary tract pathogen. Our approach presents a generalized framework for characterizing sequence-function relationships in many phage-bacterial systems.

Article and author information

Author details

  1. Phil Huss

    Biochemistry, Microbiology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    Phil Huss, P.H and S.R have filed a provisional patent application on this technology (patent application number WIS0055US)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4064-9333
  2. Anthony Meger

    Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  3. Megan Leander

    Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  4. Kyle K Nishikawa

    Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  5. Srivatsan Raman

    Biochemistry, University of Wisconsin-Madison, Madison, United States
    For correspondence
    sraman4@wisc.edu
    Competing interests
    Srivatsan Raman, P.H and S.R have filed a provisional patent application on this technology (patent application number WIS0055US). S.R is on the scientific advisory board of MAP/PATH LLC..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2461-1589

Funding

U.S. Department of Agriculture

  • Srivatsan Raman

Bill and Melinda Gates Foundation

  • Srivatsan Raman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peter Turnbaugh, University of California, San Francisco, United States

Publication history

  1. Received: October 7, 2020
  2. Accepted: March 4, 2021
  3. Accepted Manuscript published: March 9, 2021 (version 1)

Copyright

© 2021, Huss et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 789
    Page views
  • 203
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Zachary F Mandell et al.
    Research Article

    NusA and NusG are transcription factors that stimulate RNA polymerase pausing in Bacillus subtilis. While NusA was known to function as an intrinsic termination factor in B. subtilis, the role of NusG in this process was unknown. To examine the individual and combinatorial roles that NusA and NusG play in intrinsic termination, Term-seq was conducted in wild type, NusA depletion, DnusG, and NusA depletion DnusG strains. We determined that NusG functions as an intrinsic termination factor that works alone and cooperatively with NusA to facilitate termination at 88% of the 1400 identified intrinsic terminators. Our results indicate that NusG stimulates a sequence-specific pause that assists in the completion of suboptimal terminator hairpins with weak terminal A-U and G-U base pairs at the bottom of the stem. Loss of NusA and NusG leads to global misregulation of gene expression and loss of NusG results in flagella and swimming motility defects.

    1. Biochemistry and Chemical Biology
    Vidyasiri Vemulapalli et al.
    Research Article Updated

    SHP2 is a protein tyrosine phosphatase that normally potentiates intracellular signaling by growth factors, antigen receptors, and some cytokines, yet is frequently mutated in human cancer. Here, we examine the role of SHP2 in the responses of breast cancer cells to EGF by monitoring phosphoproteome dynamics when SHP2 is allosterically inhibited by SHP099. The dynamics of phosphotyrosine abundance at more than 400 tyrosine residues reveal six distinct response signatures following SHP099 treatment and washout. Remarkably, in addition to newly identified substrate sites on proteins such as occludin, ARHGAP35, and PLCγ2, another class of sites shows reduced phosphotyrosine abundance upon SHP2 inhibition. Sites of decreased phospho-abundance are enriched on proteins with two nearby phosphotyrosine residues, which can be directly protected from dephosphorylation by the paired SH2 domains of SHP2 itself. These findings highlight the distinct roles of the scaffolding and catalytic activities of SHP2 in effecting a transmembrane signaling response.