1. Neuroscience
Download icon

Attenuated dopamine signaling after aversive learning is restored by ketamine to rescue escape actions

Research Article
  • Cited 0
  • Views 283
  • Annotations
Cite this article as: eLife 2021;10:e64041 doi: 10.7554/eLife.64041
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

Escaping aversive stimuli is essential for complex organisms, but prolonged exposure to stress leads to maladaptive learning. Stress alters neuronal activity and neuromodulatory signaling in distributed networks, modifying behavior. Here we describe changes in dopaminergic neuron activity and signaling following aversive learning in a learned helplessness paradigm in mice. A single dose of ketamine suffices to restore escape behavior after aversive learning. Dopaminergic neuron activity in the ventral tegmental area (VTA) systematically varies across learning, correlating with future sensitivity to ketamine treatment. Ketamine's effects are blocked by chemogenetic inhibition of dopamine signaling. Rather than directly altering the activity of dopaminergic neurons, ketamine appears to rescue dopamine dynamics through actions in the medial prefrontal cortex (mPFC). Chemogenetic activation of Drd1 receptor positive mPFC neurons mimics ketamine's effects on behavior. Together, our data link neuromodulatory dynamics in mPFC-VTA circuits, aversive learning, and the effects of ketamine.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files are provided for each figure.

Article and author information

Author details

  1. Mingzheng Wu

    Department of Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4415-6296
  2. Samuel Minkowicz

    Department of Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1555-1158
  3. Vasin Dumrongprechachan

    Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5890-6778
  4. Pauline Hamilton

    Department of Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lei Xiao

    Department of Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1640-9690
  6. Yevgenia Kozorovitskiy

    Department of Neurobiology, Northwestern University, Evanston, United States
    For correspondence
    Yevgenia.Kozorovitskiy@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3710-1484

Funding

Rita Allen Foundation (Rita Allen Foundation Scholar Award)

  • Yevgenia Kozorovitskiy

National Institutes of Health (R01NS107539)

  • Yevgenia Kozorovitskiy

Kinship Foundation (Searle Scholar Award)

  • Yevgenia Kozorovitskiy

Arnold and Mabel Beckman Foundation (Beckman Young Investigator Award)

  • Yevgenia Kozorovitskiy

Brain and Behavior Research Foundation (NARSAD and P&S Fund Award)

  • Yevgenia Kozorovitskiy

National Institutes of Health (T32 AG20506 affiliate fellow)

  • Mingzheng Wu

National Science Foundation (GRFP DGE-1842165)

  • Samuel Minkowicz

American Heart Association (19PRE34380056 predoctoral fellowship)

  • Vasin Dumrongprechachan

National Institutes of Health (R01MH117111)

  • Yevgenia Kozorovitskiy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were handled according to protocols approved by the Northwestern University Animal Care and Use Committee (IS00000707).

Reviewing Editor

  1. Mario Penzo, National Institute of Mental Health, United States

Publication history

  1. Received: October 15, 2020
  2. Accepted: April 26, 2021
  3. Accepted Manuscript published: April 27, 2021 (version 1)

Copyright

© 2021, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 283
    Page views
  • 61
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Eun Ju Shin et al.
    Research Article Updated

    Studies in rats, monkeys, and humans have found action-value signals in multiple regions of the brain. These findings suggest that action-value signals encoded in these brain structures bias choices toward higher expected rewards. However, previous estimates of action-value signals might have been inflated by serial correlations in neural activity and also by activity related to other decision variables. Here, we applied several statistical tests based on permutation and surrogate data to analyze neural activity recorded from the striatum, frontal cortex, and hippocampus. The results show that previously identified action-value signals in these brain areas cannot be entirely accounted for by concurrent serial correlations in neural activity and action value. We also found that neural activity related to action value is intermixed with signals related to other decision variables. Our findings provide strong evidence for broadly distributed neural signals related to action value throughout the brain.

    1. Neuroscience
    Gonçalo Lopes et al.
    Research Article Updated

    Real-time rendering of closed-loop visual environments is important for next-generation understanding of brain function and behaviour, but is often prohibitively difficult for non-experts to implement and is limited to few laboratories worldwide. We developed BonVision as an easy-to-use open-source software for the display of virtual or augmented reality, as well as standard visual stimuli. BonVision has been tested on humans and mice, and is capable of supporting new experimental designs in other animal models of vision. As the architecture is based on the open-source Bonsai graphical programming language, BonVision benefits from native integration with experimental hardware. BonVision therefore enables easy implementation of closed-loop experiments, including real-time interaction with deep neural networks, and communication with behavioural and physiological measurement and manipulation devices.