scAAVengr, a transcriptome-based pipeline for quantitative ranking of engineered AAVs with single-cell resolution

Abstract

Background:

Adeno-associated virus (AAV)-mediated gene therapies are rapidly advancing to the clinic, and AAV engineering has resulted in vectors with increased ability to deliver therapeutic genes. Although the choice of vector is critical, quantitative comparison of AAVs, especially in large animals, remains challenging.

Methods:

Here, we developed an efficient single-cell AAV engineering pipeline (scAAVengr) to simultaneously quantify and rank efficiency of competing AAV vectors across all cell types in the same animal.

Results:

To demonstrate proof-of-concept for the scAAVengr workflow, we quantified - with cell-type resolution - the abilities of naturally occurring and newly engineered AAVs to mediate gene expression in primate retina following intravitreal injection. A top performing variant identified using this pipeline, K912, was used to deliver SaCas9 and edit the rhodopsin gene in macaque retina, resulting in editing efficiency similar to infection rates detected by the scAAVengr workflow. scAAVengr was then used to identify top-performing AAV variants in mouse brain, heart and liver following systemic injection.

Conclusions:

These results validate scAAVengr as a powerful method for development of AAV vectors.

Funding:

This work was supported by funding from the Ford Foundation, NEI/NIH, Research to Prevent Blindness, Foundation Fighting Blindness, UPMC Immune Transplant and Therapy Center, and the Van Sloun fund for canine genetic research.

Data availability

Data, including count matrix files, raw fastq files as well as AAV/cell barcode tables generated from read quantification, have been uploaded to GEO under accession code GSE161645.

The following data sets were generated

Article and author information

Author details

  1. Bilge E Öztürk

    Ophthalmology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5117-077X
  2. Molly E Johnson

    Ophthalmology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  3. Michael Kleyman

    Computational Biology, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  4. Serhan Turunç

    Ophthalmology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  5. Jing He

    Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  6. Sara Jabalameli

    Ophthalmology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  7. Zhouhuan Xi

    Ophthalmology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  8. Meike Visel

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    Meike Visel, MV is an inventor on AAV capsid variants (US patent IDs: 10,214,785, 10,745,453). MV has also received royalty payments from UC Berkeley. The author has no other competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5033-3730
  9. Valérie L Dufour

    Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  10. Simone Iwabe

    Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  11. Felipe Pompeo Marinho

    Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  12. Gustavo D Aguirre

    Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  13. José-Alain Sahel

    Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    José-Alain Sahel, JAS has served as a consultant (with no consulting fee) for Pixium Vision, GenSight Biologics and SparingVision. Personal financial interests: Pixium Vision, GenSight Biologics, Prophesee and Chronolife, SparingVision, SHARPEYE, Vegavect, Newsight Therapeutics. The author has no other competing interests to declare..
  14. David V Schaffer

    Chemical Engineering, University of California, Berkeley, Berkeley, United States
    Competing interests
    David V Schaffer, DS is named as an inventor on patent applications on AAV capsid variants (U.S. Patent Applications No. 16/315,032, 16/486,681). DS is also a co-founder of 4D Molecular Therapeutics, and DS performs consultancy and owns stock options in this company. The author has no other competing interests to declare..
  15. Andreas R Pfenning

    Computational Biology, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    Andreas R Pfenning, AP has received an honorarium from the University of Rhode Island, and has applied for patents on specific Nuclear-Anchored Independent Labeling System (PCT/US2020/038520 and PCT/US2020/038528). The author has no other competing interests to declare..
  16. John G Flannery

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    John G Flannery, JGF is an inventor on patent application on AAV capsid variants (U.S. Patent Application No. 16/315,032, 16/486,681). The author has no other competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0720-8897
  17. William A Beltran

    Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    William A Beltran, WAB is an inventor on patent application on AAV capsid variants(16/315,032). The author has no other competing interests to declare..
  18. William R Stauffer

    Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    William R Stauffer, WRS in an inventor on a patent application for methods of AAV capsid development (PCT/US2019/068489). The author has no other competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1031-8824
  19. Leah C Byrne

    University of Pittsburgh, Pittsburgh, PA, United States
    For correspondence
    lctbyrne@gmail.com
    Competing interests
    Leah C Byrne, LB is named as an inventor on patent applications on AAV capsid variants and AAV screening methods (U.S. Patent Applications No. 16/315,032, 16/486,681, PCT/US2019/068489). LB has consulted on AAV-mediated gene therapy for Vedere Therapeutics, and is a named founder of Vegavect and Newsight Therapeutics. The author has no other competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3229-4993

Funding

Ford Foundation

  • Leah C Byrne

UPMC Immune Transplant and Therapy Center

  • Leah C Byrne

Van Sloun Fund for Canine Genetic Research

  • Gustavo D Aguirre

National Eye Institute (F32EY023891)

  • Leah C Byrne

National Eye Institute (R24EY-022012)

  • David V Schaffer
  • John G Flannery
  • William A Beltran

National Eye Institute (R01EY017549)

  • Gustavo D Aguirre
  • William A Beltran

National Eye Institute (P30EY001583)

  • Gustavo D Aguirre
  • William A Beltran

National Institute of Mental Health (UG3MH120094)

  • Andreas R Pfenning
  • William A Beltran
  • Leah C Byrne

National Institute of Mental Health (DP2MH113095)

  • William R Stauffer

Research to Prevent Blindness

  • Leah C Byrne

Foundation Fighting Blindness

  • Leah C Byrne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in compliance with the ARVO statement for the Use of Animals in Ophthalmic and Vision Research, and for canine studies with approval by the University of Pennsylvania Institutional Animal Care and Use Committee (IACUC # 803813), and for the NHP and mouse studies with approval from the University of Pittsburgh Institutional Animal Care and Use Committee (IACUC #18042326).

Copyright

© 2021, Öztürk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,814
    views
  • 1,336
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bilge E Öztürk
  2. Molly E Johnson
  3. Michael Kleyman
  4. Serhan Turunç
  5. Jing He
  6. Sara Jabalameli
  7. Zhouhuan Xi
  8. Meike Visel
  9. Valérie L Dufour
  10. Simone Iwabe
  11. Felipe Pompeo Marinho
  12. Gustavo D Aguirre
  13. José-Alain Sahel
  14. David V Schaffer
  15. Andreas R Pfenning
  16. John G Flannery
  17. William A Beltran
  18. William R Stauffer
  19. Leah C Byrne
(2021)
scAAVengr, a transcriptome-based pipeline for quantitative ranking of engineered AAVs with single-cell resolution
eLife 10:e64175.
https://doi.org/10.7554/eLife.64175

Share this article

https://doi.org/10.7554/eLife.64175

Further reading

    1. Medicine
    Sami Fawaz, Severine Marti ... Thierry Couffinhal
    Research Article

    Background:

    Clonal hematopoiesis of indeterminate potential (CHIP) was initially linked to a twofold increase in atherothrombotic events. However, recent investigations have revealed a more nuanced picture, suggesting that CHIP may confer only a modest rise in myocardial infarction (MI) risk. This observed lower risk might be influenced by yet unidentified factors that modulate the pathological effects of CHIP. Mosaic loss of the Y chromosome (mLOY), a common marker of clonal hematopoiesis in men, has emerged as a potential candidate for modulating cardiovascular risk associated with CHIP. In this study, we aimed to ascertain the risk linked to each somatic mutation or mLOY and explore whether mLOY could exert an influence on the cardiovascular risk associated with CHIP.

    Methods:

    We conducted an examination for the presence of CHIP and mLOY using targeted high-throughput sequencing and digital PCR in a cohort of 446 individuals. Among them, 149 patients from the CHAth study had experienced a first MI at the time of inclusion (MI(+) subjects), while 297 individuals from the Three-City cohort had no history of cardiovascular events (CVE) at the time of inclusion (MI(-) subjects). All subjects underwent thorough cardiovascular phenotyping, including a direct assessment of atherosclerotic burden. Our investigation aimed to determine whether mLOY could modulate inflammation, atherosclerosis burden, and atherothrombotic risk associated with CHIP.

    Results:

    CHIP and mLOY were detected with a substantial prevalence (45.1% and 37.7%, respectively), and their occurrence was similar between MI(+) and MI(-) subjects. Notably, nearly 40% of CHIP(+) male subjects also exhibited mLOY. Interestingly, neither CHIP nor mLOY independently resulted in significant increases in plasma hs-CRP levels, atherosclerotic burden, or MI incidence. Moreover, mLOY did not amplify or diminish inflammation, atherosclerosis, or MI incidence among CHIP(+) male subjects. Conversely, in MI(-) male subjects, CHIP heightened the risk of MI over a 5 y period, particularly in those lacking mLOY.

    Conclusions:

    Our study highlights the high prevalence of CHIP and mLOY in elderly individuals. Importantly, our results demonstrate that neither CHIP nor mLOY in isolation substantially contributes to inflammation, atherosclerosis, or MI incidence. Furthermore, we find that mLOY does not exert a significant influence on the modulation of inflammation, atherosclerosis burden, or atherothrombotic risk associated with CHIP. However, CHIP may accelerate the occurrence of MI, especially when unaccompanied by mLOY. These findings underscore the complexity of the interplay between CHIP, mLOY, and cardiovascular risk, suggesting that large-scale studies with thousands more patients may be necessary to elucidate subtle correlations.

    Funding:

    This study was supported by the Fondation Cœur & Recherche (the Société Française de Cardiologie), the Fédération Française de Cardiologie, ERA-CVD (« CHEMICAL » consortium, JTC 2019) and the Fondation Université de Bordeaux. The laboratory of Hematology of the University Hospital of Bordeaux benefitted of a convention with the Nouvelle Aquitaine Region (2018-1R30113-8473520) for the acquisition of the Nextseq 550Dx sequencer used in this study.

    Clinical trial number:

    NCT04581057.

    1. Biochemistry and Chemical Biology
    2. Medicine
    Soo-Yeon Hwang, Kyung-Hwa Jeon ... Youngjoo Kwon
    Research Article

    HER2 overexpression significantly contributes to the aggressive nature and recurrent patterns observed in various solid tumors, notably gastric cancers. Trastuzumab, HER2-targeting monoclonal antibody drug, has shown considerable clinical success; however, readily emerging drug resistance emphasizes the pressing need for improved interventions in HER2-overexpressing cancers. To address this, we proposed targeting the protein-protein interaction (PPI) between ELF3 and MED23 as an alternative therapeutic approach to trastuzumab. In this study, we synthesized a total of 26 compounds consisting of 10 chalcones, 7 pyrazoline acetyl, and 9 pyrazoline propionyl derivatives, and evaluated their biological activity as potential ELF3-MED23 PPI inhibitors. Upon systematic analysis, candidate compound 10 was selected due to its potency in downregulating reporter gene activity of ERBB2 promoter confirmed by SEAP activity and its effect on HER2 protein and mRNA levels. Compound 10 effectively disrupted the binding interface between the ELF3 TAD domain and the 391–582 amino acid region of MED23, resulting in successful inhibition of the ELF3-MED23 PPI. This intervention led to a substantial reduction in HER2 levels and its downstream signals in the HER2-positive gastric cancer cell line. Subsequently, compound 10 induced significant apoptosis and anti-proliferative effects, demonstrating superior in vitro and in vivo anticancer activity overall. We found that the anticancer activity of compound 10 was not only restricted to trastuzumab-sensitive cases, but was also valid for trastuzumab-refractory clones. This suggests its potential as a viable therapeutic option for trastuzumab-resistant gastric cancers. In summary, compound 10 could be a novel alternative therapeutic strategy for HER2-overexpressing cancers, overcoming the limitations of trastuzumab.