1. Epidemiology and Global Health
  2. Medicine
Download icon

SARS-CoV-2 suppresses anticoagulant and fibrinolytic gene expression in the lung

  1. Alan E Mast
  2. Alisa S Wolberg
  3. David Gailani
  4. Michael R Garvin
  5. Christiane Alvarez
  6. J Izaak Miller
  7. Bruce Aronow
  8. Daniel Jacobson  Is a corresponding author
  1. Medical College of Wisconsin, United States
  2. UNC Blood Research Center, United States
  3. Vanderbilt University Medical Center, United States
  4. Oak Ridge National Laboratory, United States
  5. Cincinnati Children's Hospital Research Foundation, United States
Research Article
  • Cited 8
  • Views 1,591
  • Annotations
Cite this article as: eLife 2021;10:e64330 doi: 10.7554/eLife.64330

Abstract

Extensive fibrin deposition in the lungs and altered levels of circulating blood coagulation proteins in COVID-19 patients imply local derangement of pathways that limit fibrin formation and/or promote its clearance. We examined transcriptional profiles of bronchoalveolar lavage fluid (BALF) samples to identify molecular mechanisms underlying these coagulopathies. mRNA levels for regulators of the kallikrein-kinin (C1-inhibitor), coagulation (thrombomodulin, endothelial protein C receptor), and fibrinolytic (urokinase and urokinase receptor) pathways were significantly reduced in COVID-19 patients. While transcripts for several coagulation proteins were increased, those encoding tissue factor, the protein that initiates coagulation and whose expression is frequently increased in inflammatory disorders, were not increased in BALF from COVID-19 patients. Our analysis implicates enhanced propagation of coagulation and decreased fibrinolysis as drivers of the coagulopathy in the lungs of COVID-19 patients.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Data for control and COVID-19 bronchoalveolar lavage samples are available in the Sequence Read Archive at NCBI.

The following previously published data sets were used

Article and author information

Author details

  1. Alan E Mast

    Versiti Blood Research Institute, Medical College of Wisconsin, Milwaukee, United States
    Competing interests
    Alan E Mast, receives research funding from Novo Nordisk and has received honoraria for serving on Novo Nordisk advisory boards..
  2. Alisa S Wolberg

    Department of Pathology and Laboratory Medicine, UNC Blood Research Center, Chapel Hill, United States
    Competing interests
    Alisa S Wolberg, receives research funding from Takeda and Bristol Myers Squibb.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2845-2303
  3. David Gailani

    3Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    David Gailani, receives research funding from Bayer and has received honoraria for serving on Anthos, Bristol-Myers Squibb, Ionis and Janssen advisoryboards..
  4. Michael R Garvin

    Biosciences, Oak Ridge National Laboratory, Oak Ridge, United States
    Competing interests
    No competing interests declared.
  5. Christiane Alvarez

    Biosciences, Oak Ridge National Laboratory, Oak Ridge, United States
    Competing interests
    No competing interests declared.
  6. J Izaak Miller

    Biosciences, Oak Ridge National Laboratory, Oak Ridge, United States
    Competing interests
    No competing interests declared.
  7. Bruce Aronow

    Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States
    Competing interests
    No competing interests declared.
  8. Daniel Jacobson

    Biosciences, Oak Ridge National Laboratory, Oak Ridge, United States
    For correspondence
    jacobsonda@ornl.gov
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9822-8251

Funding

Oak Ridge National Laboratory (LOIS:10074)

  • Michael R Garvin
  • Christiane Alvarez
  • J Izaak Miller
  • Daniel Jacobson

National Institutes of Health (U24 HL148865)

  • Bruce Aronow

National Institutes of Health (HL068835)

  • Alan E Mast

National Institutes of Health (HL143403)

  • Alisa S Wolberg

National Institutes of Health (HL126974)

  • Alisa S Wolberg

National Institutes of Health (HL140025)

  • David Gailani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Noriaki Emoto, Kobe Pharmaceutical University, Japan

Publication history

  1. Received: October 26, 2020
  2. Accepted: March 6, 2021
  3. Accepted Manuscript published: March 8, 2021 (version 1)
  4. Accepted Manuscript updated: March 9, 2021 (version 2)
  5. Version of Record published: April 15, 2021 (version 3)

Copyright

© 2021, Mast et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,591
    Page views
  • 239
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Epidemiology and Global Health
    2. Medicine
    Wuqing Huang et al.
    Research Article

    Background: Lipid metabolism plays an important role in viral infections. We aimed to assess the causal effect of lipid-lowering drugs (HMGCR inhibitiors, PCSK9 inhibitiors and NPC1L1 inhibitior) on COVID-19 outcomes using 2-sample Mendelian Randomization (MR) study.

    Methods: We used two kinds of genetic instruments to proxy the exposure of lipid-lowering drugs, including eQTLs of drugs target genes, and genetic variants within or nearby drugs target genes associated with LDL cholesterol from GWAS. Summary-data-based MR (SMR) and inverse-variance weighted MR (IVW-MR) were used to calculate the effect estimates.

    Results: SMR analysis found that a higher expression of HMGCR was associated with a higher risk of COVID-19 hospitalization (OR=1.38, 95%CI=1.06-1.81). Similarly, IVW-MR analysis observed a positive association between HMGCR-mediated LDL cholesterol and COVID-19 hospitalization (OR=1.32, 95%CI=1.00-1.74). No consistent evidence from both analyses was found for other associations.

    Conclusions: This 2-sample MR study suggested a potential causal relationship between HMGCR inhibition and the reduced risk of COVID-19 hospitalization.

    Funding: Fujian Province Major Science and Technology Program.

    1. Epidemiology and Global Health
    2. Immunology and Inflammation
    Yansheng Li et al.
    Research Article Updated

    Influenza pandemics pose public health threats annually for lacking vaccine that provides cross-protection against novel and emerging influenza viruses. Combining conserved antigens that induce cross-protective antibody responses with epitopes that activate cross-protective T cell responses might be an attractive strategy for developing a universal vaccine. In this study, we constructed a recombinant protein named NMHC that consists of influenza viral conserved epitopes and a superantigen fragment. NMHC promoted the maturation of bone marrow-derived dendritic cells and induced CD4+ T cells to differentiate into Th1, Th2, and Th17 subtypes. Mice vaccinated with NMHC produced high levels of immunoglobulins that cross-bound to HA fragments from six influenza virus subtypes with high antibody titers. Anti-NMHC serum showed potent hemagglutinin inhibition effects to highly divergent group 1 (H1 subtype) and group 2 (H3 subtype) influenza virus strains. Furthermore, purified anti-NMHC antibodies bound to multiple HAs with high affinities. NMHC vaccination effectively protected mice from infection and lung damage when exposed to two subtypes of H1N1 influenza virus. Moreover, NMHC vaccination elicited CD4+ and CD8+ T cell responses that cleared the virus from infected tissues and prevented virus spread. In conclusion, this study provides proof of concept that NMHC vaccination triggers B and T cell immune responses against multiple influenza virus infections. Therefore, NMHC might be a candidate universal broad-spectrum vaccine for the prevention and treatment of multiple influenza viruses.