1. Neuroscience
Download icon

Decoding subjective emotional arousal from eeg during an immersive virtual reality experience

  1. Simon M Hofmann  Is a corresponding author
  2. Felix Klotzsche  Is a corresponding author
  3. Alberto Mariola  Is a corresponding author
  4. Vadim Nikulin
  5. Arno Villringer
  6. Michael Gaebler  Is a corresponding author
  1. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  2. University of Sussex, United Kingdom
Research Article
  • Cited 0
  • Views 170
  • Annotations
Cite this article as: eLife 2021;10:e64812 doi: 10.7554/eLife.64812

Abstract

Immersive virtual reality (VR) enables naturalistic neuroscientific studies while maintaining experimental control, but dynamic and interactive stimuli pose methodological challenges. We here probed the link between emotional arousal, a fundamental property of affective experience, and parieto-occipital alpha power under naturalistic stimulation: 37 young healthy adults completed an immersive VR experience, which included rollercoaster rides, while their EEG was recorded. They then continuously rated their subjective emotional arousal while viewing a replay of their experience. The association between emotional arousal and parieto-occipital alpha power was tested and confirmed by (1) decomposing the continuous EEG signal while maximizing the comodulation between alpha power and arousal ratings and by (2) decoding periods of high and low arousal with discriminative common spatial patterns and a Long Short-Term Memory recurrent neural network. We successfully combine EEG and a naturalistic immersive VR experience to extend previous findings on the neurophysiology of emotional arousal towards real-world neuroscience.

Data availability

We did not obtain participants' consent to release their individual data. Since our analyses focus on the single-subject level, we have only limited data which are sufficiently anonymized (e.g., summarized or averaged) to be publicly shared. Wherever possible, we provide "source data" to reproduce the manuscript's tables and figures (Figures 2, 4, 8 and 10). The scripts of all analyses are available at https://github.com/SHEscher/NeVRo

Article and author information

Author details

  1. Simon M Hofmann

    Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    For correspondence
    simon.hofmann@cbs.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0958-501X
  2. Felix Klotzsche

    Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    For correspondence
    klotzsche@cbs.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3985-2481
  3. Alberto Mariola

    Informatics, University of Sussex, Brighton, United Kingdom
    For correspondence
    a.mariola@sussex.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  4. Vadim Nikulin

    Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Arno Villringer

    Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael Gaebler

    Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    For correspondence
    gaebler@cbs.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Bundesministerium für Bildung und Forschung (13GW0206)

  • Felix Klotzsche
  • Michael Gaebler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Participants signed informed consent before their participation, and the study was approved by the Ethics Committee of the Department of Psychology at the Humboldt-Universität zu Berlin (vote no. 2017-22).

Reviewing Editor

  1. Alexander Shackman, University of Maryland, United States

Publication history

  1. Received: November 11, 2020
  2. Accepted: October 27, 2021
  3. Accepted Manuscript published: October 28, 2021 (version 1)

Copyright

© 2021, Hofmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 170
    Page views
  • 35
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Zhengchao Xu et al.
    Tools and Resources Updated

    The dorsal raphe nucleus (DR) and median raphe nucleus (MR) contain populations of glutamatergic and GABAergic neurons that regulate diverse behavioral functions. However, their whole-brain input-output circuits remain incompletely elucidated. We used viral tracing combined with fluorescence micro-optical sectioning tomography to generate a comprehensive whole-brain atlas of inputs and outputs of glutamatergic and GABAergic neurons in the DR and MR. We found that these neurons received inputs from similar upstream brain regions. The glutamatergic and GABAergic neurons in the same raphe nucleus had divergent projection patterns with differences in critical brain regions. Specifically, MR glutamatergic neurons projected to the lateral habenula through multiple pathways. Correlation and cluster analysis revealed that glutamatergic and GABAergic neurons in the same raphe nucleus received heterogeneous inputs and sent different collateral projections. This connectivity atlas further elucidates the anatomical architecture of the raphe nuclei, which could facilitate better understanding of their behavioral functions.

    1. Neuroscience
    Shankar Ramachandran et al.
    Research Article Updated

    Neuromodulators promote adaptive behaviors that are often complex and involve concerted activity changes across circuits that are often not physically connected. It is not well understood how neuromodulatory systems accomplish these tasks. Here, we show that the Caenorhabditis elegans NLP-12 neuropeptide system shapes responses to food availability by modulating the activity of head and body wall motor neurons through alternate G-protein coupled receptor (GPCR) targets, CKR-1 and CKR-2. We show ckr-2 deletion reduces body bend depth during movement under basal conditions. We demonstrate CKR-1 is a functional NLP-12 receptor and define its expression in the nervous system. In contrast to basal locomotion, biased CKR-1 GPCR stimulation of head motor neurons promotes turning during local searching. Deletion of ckr-1 reduces head neuron activity and diminishes turning while specific ckr-1 overexpression or head neuron activation promote turning. Thus, our studies suggest locomotor responses to changing food availability are regulated through conditional NLP-12 stimulation of head or body wall motor circuits.