Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience

  1. Alexander Fengler  Is a corresponding author
  2. Lakshmi N Govindarajan
  3. Tony Chen
  4. Michael J Frank  Is a corresponding author
  1. Brown University, United States
  2. Boston College, United States

Abstract

In cognitive neuroscience, computational modeling can formally adjudicate between theories and affords quantitative fits to behavioral/brain data. Pragmatically, however, the space of plausible generative models considered is dramatically limited by the set of models with known likelihood functions. For many models, the lack of a closed-form likelihood typically impedes Bayesian inference methods. As a result, standard models are evaluated for convenience, even when other models might be superior. Likelihood-free methods exist but are limited by their computational cost or their restriction to particular inference scenarios. Here, we propose neural networks that learn approximate likelihoods for arbitrary generative models, allowing fast posterior sampling with only a one-off cost for model simulations that is amortized for future inference. We show that these methods can accurately recover posterior parameter distributions for a variety of neurocognitive process models. We provide code allowing users to deploy these methods for arbitrary hierarchical model instantiations without further training.

Data availability

All code is provided freely and is available at the following links: https://github.com/lnccbrown/lans/tree/master/hddmnn-tutorial, https://github.com/lnccbrown/lans/tree/master/al-mlp and https://github.com/lnccbrown/lans/tree/master/al-cnn.

Article and author information

Author details

  1. Alexander Fengler

    Robert J and Nancy D Carney Institute for Brain Science; Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, United States
    For correspondence
    alexander_fengler@brown.edu
    Competing interests
    No competing interests declared.
  2. Lakshmi N Govindarajan

    Robert J and Nancy D Carney Institute for Brain Science; Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0936-2919
  3. Tony Chen

    Psychology and Neuroscience, Boston College, Boston, United States
    Competing interests
    No competing interests declared.
  4. Michael J Frank

    Robert J and Nancy D Carney Institute for Brain Science; Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, United States
    For correspondence
    Michael_Frank@brown.edu
    Competing interests
    Michael J Frank, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8451-0523

Funding

National Institute of Mental Health (P50 MH119467-01)

  • Michael J Frank

National Institute of Mental Health (R01 MH084840-08A1)

  • Michael J Frank

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Valentin Wyart, École normale supérieure, PSL University, INSERM, France

Version history

  1. Received: November 21, 2020
  2. Accepted: April 1, 2021
  3. Accepted Manuscript published: April 6, 2021 (version 1)
  4. Version of Record published: May 6, 2021 (version 2)
  5. Version of Record updated: May 21, 2021 (version 3)

Copyright

© 2021, Fengler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,959
    views
  • 565
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander Fengler
  2. Lakshmi N Govindarajan
  3. Tony Chen
  4. Michael J Frank
(2021)
Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience
eLife 10:e65074.
https://doi.org/10.7554/eLife.65074

Share this article

https://doi.org/10.7554/eLife.65074

Further reading

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.