Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience

  1. Alexander Fengler  Is a corresponding author
  2. Lakshmi N Govindarajan
  3. Tony Chen
  4. Michael J Frank  Is a corresponding author
  1. Brown University, United States
  2. Boston College, United States

Abstract

In cognitive neuroscience, computational modeling can formally adjudicate between theories and affords quantitative fits to behavioral/brain data. Pragmatically, however, the space of plausible generative models considered is dramatically limited by the set of models with known likelihood functions. For many models, the lack of a closed-form likelihood typically impedes Bayesian inference methods. As a result, standard models are evaluated for convenience, even when other models might be superior. Likelihood-free methods exist but are limited by their computational cost or their restriction to particular inference scenarios. Here, we propose neural networks that learn approximate likelihoods for arbitrary generative models, allowing fast posterior sampling with only a one-off cost for model simulations that is amortized for future inference. We show that these methods can accurately recover posterior parameter distributions for a variety of neurocognitive process models. We provide code allowing users to deploy these methods for arbitrary hierarchical model instantiations without further training.

Data availability

All code is provided freely and is available at the following links: https://github.com/lnccbrown/lans/tree/master/hddmnn-tutorial, https://github.com/lnccbrown/lans/tree/master/al-mlp and https://github.com/lnccbrown/lans/tree/master/al-cnn.

Article and author information

Author details

  1. Alexander Fengler

    Robert J and Nancy D Carney Institute for Brain Science; Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, United States
    For correspondence
    alexander_fengler@brown.edu
    Competing interests
    No competing interests declared.
  2. Lakshmi N Govindarajan

    Robert J and Nancy D Carney Institute for Brain Science; Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0936-2919
  3. Tony Chen

    Psychology and Neuroscience, Boston College, Boston, United States
    Competing interests
    No competing interests declared.
  4. Michael J Frank

    Robert J and Nancy D Carney Institute for Brain Science; Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, United States
    For correspondence
    Michael_Frank@brown.edu
    Competing interests
    Michael J Frank, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8451-0523

Funding

National Institute of Mental Health (P50 MH119467-01)

  • Michael J Frank

National Institute of Mental Health (R01 MH084840-08A1)

  • Michael J Frank

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Fengler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,268
    views
  • 622
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander Fengler
  2. Lakshmi N Govindarajan
  3. Tony Chen
  4. Michael J Frank
(2021)
Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience
eLife 10:e65074.
https://doi.org/10.7554/eLife.65074

Share this article

https://doi.org/10.7554/eLife.65074

Further reading

    1. Developmental Biology
    2. Neuroscience
    Jayanarayanan Sadanandan, Sithara Thomas ... Peeyush Kumar T
    Research Article

    The blood-brain barrier (BBB) controls the movement of molecules into and out of the central nervous system (CNS). Since a functional BBB forms by mouse embryonic day E15.5, we reasoned that gene cohorts expressed in CNS endothelial cells (EC) at E13.5 contribute to BBB formation. In contrast, adult gene signatures reflect BBB maintenance mechanisms. Supporting this hypothesis, transcriptomic analysis revealed distinct cohorts of EC genes involved in BBB formation and maintenance. Here, we demonstrate that epigenetic regulator’s histone deacetylase 2 (HDAC2) and polycomb repressive complex 2 (PRC2) control EC gene expression for BBB development and prevent Wnt/β-catenin (Wnt) target genes from being expressed in adult CNS ECs. Low Wnt activity during development modifies BBB genes epigenetically for the formation of functional BBB. As a Class-I HDAC inhibitor induces adult CNS ECs to regain Wnt activity and BBB genetic signatures that support BBB formation, our results inform strategies to promote BBB repair.

    1. Developmental Biology
    2. Neuroscience
    Xingsen Zhao, Qihang Sun ... Xuekun Li
    Research Article

    Williams syndrome (WS; OMIM#194050) is a rare disorder, which is caused by the microdeletion of one copy of 25–27 genes, and WS patients display diverse neuronal deficits. Although remarkable progresses have been achieved, the mechanisms for these distinct deficits are still largely unknown. Here, we have shown that neural progenitor cells (NPCs) in WS forebrain organoids display abnormal proliferation and differentiation capabilities, and synapse formation. Genes with altered expression are related to neuronal development and neurogenesis. Single cell RNA-seq (scRNA-seq) data analysis revealed 13 clusters in healthy control and WS organoids. WS organoids show an aberrant generation of excitatory neurons. Mechanistically, the expression of transthyretin (TTR) are remarkably decreased in WS forebrain organoids. We have found that GTF2IRD1 encoded by one WS associated gene GTF2IRD1 binds to TTR promoter regions and regulates the expression of TTR. In addition, exogenous TTR can activate ERK signaling and rescue neurogenic deficits of WS forebrain organoids. Gtf2ird1-deficient mice display similar neurodevelopmental deficits as observed in WS organoids. Collectively, our study reveals critical function of GTF2IRD1 in regulating neurodevelopment of WS forebrain organoids and mice through regulating TTR-ERK pathway.