MiSiC, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities

  1. Swapnesh Panigrahi
  2. Dorothée Murat
  3. Antoine Le Gall
  4. Eugénie Martineau
  5. Kelly Goldlust
  6. Jean-Bernard Fiche
  7. Sara Rombouts
  8. Marcelo Nöllmann​
  9. Leon Espinosa
  10. Tâm Mignot  Is a corresponding author
  1. CNRS-Aix Marseille University, France
  2. CNRS UMR 5048, INSERM U1054, Université de Montpellier, France
  3. Aix Marseille Université, France

Abstract

Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.

Data availability

The tensorflow model describe in this article is available in GitHub :https://github.com/pswapnesh/MiSiChttps://github.com/leec13/MiSiCguiSource data files have been provided for Figures 2, 3, 4 and 5

Article and author information

Author details

  1. Swapnesh Panigrahi

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
  2. Dorothée Murat

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5809-9267
  3. Antoine Le Gall

    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  4. Eugénie Martineau

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
  5. Kelly Goldlust

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
  6. Jean-Bernard Fiche

    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  7. Sara Rombouts

    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  8. Marcelo Nöllmann​

    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  9. Leon Espinosa

    Laboratoire de Chimie Bactérienne UMR7283, Centre national de la recherche scientifique, Aix Marseille Université, Marseille, France
    Competing interests
    No competing interests declared.
  10. Tâm Mignot

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    For correspondence
    tmignot@imm.cnrs.fr
    Competing interests
    Tâm Mignot, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4338-9063

Funding

ERC advanced grant (JAWS 885145)

  • Tâm Mignot

AMIDEX

  • Eugénie Martineau

ANR (IBM (ANR-14-CE09-0025-01))

  • Marcelo Nöllmann​

ANR (HiResBacs (ANR-15-CE11-0023))

  • Marcelo Nöllmann​

CNRS 80-prime

  • Swapnesh Panigrahi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Panigrahi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,014
    views
  • 439
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Swapnesh Panigrahi
  2. Dorothée Murat
  3. Antoine Le Gall
  4. Eugénie Martineau
  5. Kelly Goldlust
  6. Jean-Bernard Fiche
  7. Sara Rombouts
  8. Marcelo Nöllmann​
  9. Leon Espinosa
  10. Tâm Mignot
(2021)
MiSiC, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities
eLife 10:e65151.
https://doi.org/10.7554/eLife.65151

Share this article

https://doi.org/10.7554/eLife.65151

Further reading

    1. Computational and Systems Biology
    Jun Ren, Ying Zhou ... Qiyuan Li
    Research Article

    Manifold-learning is particularly useful to resolve the complex cellular state space from single-cell RNA sequences. While current manifold-learning methods provide insights into cell fate by inferring graph-based trajectory at cell level, challenges remain to retrieve interpretable biology underlying the diverse cellular states. Here, we described MGPfactXMBD, a model-based manifold-learning framework and capable to factorize complex development trajectories into independent bifurcation processes of gene sets, and thus enables trajectory inference based on relevant features. MGPfactXMBD offers a more nuanced understanding of the biological processes underlying cellular trajectories with potential determinants. When bench-tested across 239 datasets, MGPfactXMBD showed advantages in major quantity-control metrics, such as branch division accuracy and trajectory topology, outperforming most established methods. In real datasets, MGPfactXMBD recovered the critical pathways and cell types in microglia development with experimentally valid regulons and markers. Furthermore, MGPfactXMBD discovered evolutionary trajectories of tumor-associated CD8+ T cells and yielded new subtypes of CD8+ T cells with gene expression signatures significantly predictive of the responses to immune checkpoint inhibitor in independent cohorts. In summary, MGPfactXMBD offers a manifold-learning framework in scRNA-seq data which enables feature selection for specific biological processes and contributing to advance our understanding of biological determination of cell fate.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Daniel Hui, Scott Dudek ... Marylyn D Ritchie
    Research Article

    Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed the effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N = 491,111) and African (N = 21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best- and worst-performing quintiles for certain covariates. Twenty-eight covariates had significant PGSBMI–covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects – across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account nonlinear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge genome-wide association studies effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.