MiSiC, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities

  1. Swapnesh Panigrahi
  2. Dorothée Murat
  3. Antoine Le Gall
  4. Eugénie Martineau
  5. Kelly Goldlust
  6. Jean-Bernard Fiche
  7. Sara Rombouts
  8. Marcelo Nöllmann​
  9. Leon Espinosa
  10. Tâm Mignot  Is a corresponding author
  1. CNRS-Aix Marseille University, France
  2. CNRS UMR 5048, INSERM U1054, Université de Montpellier, France
  3. Aix Marseille Université, France

Abstract

Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.

Data availability

The tensorflow model describe in this article is available in GitHub :https://github.com/pswapnesh/MiSiChttps://github.com/leec13/MiSiCguiSource data files have been provided for Figures 2, 3, 4 and 5

Article and author information

Author details

  1. Swapnesh Panigrahi

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
  2. Dorothée Murat

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5809-9267
  3. Antoine Le Gall

    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  4. Eugénie Martineau

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
  5. Kelly Goldlust

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
  6. Jean-Bernard Fiche

    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  7. Sara Rombouts

    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  8. Marcelo Nöllmann​

    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  9. Leon Espinosa

    Laboratoire de Chimie Bactérienne UMR7283, Centre national de la recherche scientifique, Aix Marseille Université, Marseille, France
    Competing interests
    No competing interests declared.
  10. Tâm Mignot

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    For correspondence
    tmignot@imm.cnrs.fr
    Competing interests
    Tâm Mignot, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4338-9063

Funding

ERC advanced grant (JAWS 885145)

  • Tâm Mignot

AMIDEX

  • Eugénie Martineau

ANR (IBM (ANR-14-CE09-0025-01))

  • Marcelo Nöllmann​

ANR (HiResBacs (ANR-15-CE11-0023))

  • Marcelo Nöllmann​

CNRS 80-prime

  • Swapnesh Panigrahi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jie Xiao, Johns Hopkins University, United States

Version history

  1. Preprint posted: October 7, 2020 (view preprint)
  2. Received: November 24, 2020
  3. Accepted: September 7, 2021
  4. Accepted Manuscript published: September 9, 2021 (version 1)
  5. Version of Record published: September 28, 2021 (version 2)

Copyright

© 2021, Panigrahi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,557
    Page views
  • 384
    Downloads
  • 24
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Swapnesh Panigrahi
  2. Dorothée Murat
  3. Antoine Le Gall
  4. Eugénie Martineau
  5. Kelly Goldlust
  6. Jean-Bernard Fiche
  7. Sara Rombouts
  8. Marcelo Nöllmann​
  9. Leon Espinosa
  10. Tâm Mignot
(2021)
MiSiC, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities
eLife 10:e65151.
https://doi.org/10.7554/eLife.65151

Share this article

https://doi.org/10.7554/eLife.65151

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Thomas Grandits, Christoph M Augustin ... Alexander Jung
    Research Article

    Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the present study introduces a neural network (NN) that emulates the AP for given maximum conductances of selected ion channels, pumps, and exchangers. Its applicability in pharmacological studies was tested on synthetic and experimental data. The NN emulator potentially enables massive speed-ups compared to regular simulations and the forward problem (find drugged AP for pharmacological parameters defined as scaling factors of control maximum conductances) on synthetic data could be solved with average root-mean-square errors (RMSE) of 0.47 mV in normal APs and of 14.5 mV in abnormal APs exhibiting early afterdepolarizations (72.5% of the emulated APs were alining with the abnormality, and the substantial majority of the remaining APs demonstrated pronounced proximity). This demonstrates not only very fast and mostly very accurate AP emulations but also the capability of accounting for discontinuities, a major advantage over existing emulation strategies. Furthermore, the inverse problem (find pharmacological parameters for control and drugged APs through optimization) on synthetic data could be solved with high accuracy shown by a maximum RMSE of 0.22 in the estimated pharmacological parameters. However, notable mismatches were observed between pharmacological parameters estimated from experimental data and distributions obtained from the Comprehensive in vitro Proarrhythmia Assay initiative. This reveals larger inaccuracies which can be attributed particularly to the fact that small tissue preparations were studied while the emulator was trained on single cardiomyocyte data. Overall, our study highlights the potential of NN emulators as powerful tool for an increased efficiency in future quantitative systems pharmacology studies.

    1. Computational and Systems Biology
    2. Neuroscience
    Domingos Leite de Castro, Miguel Aroso ... Paulo Aguiar
    Research Article Updated

    Closed-loop neuronal stimulation has a strong therapeutic potential for neurological disorders such as Parkinson’s disease. However, at the moment, standard stimulation protocols rely on continuous open-loop stimulation and the design of adaptive controllers is an active field of research. Delayed feedback control (DFC), a popular method used to control chaotic systems, has been proposed as a closed-loop technique for desynchronisation of neuronal populations but, so far, was only tested in computational studies. We implement DFC for the first time in neuronal populations and access its efficacy in disrupting unwanted neuronal oscillations. To analyse in detail the performance of this activity control algorithm, we used specialised in vitro platforms with high spatiotemporal monitoring/stimulating capabilities. We show that the conventional DFC in fact worsens the neuronal population oscillatory behaviour, which was never reported before. Conversely, we present an improved control algorithm, adaptive DFC (aDFC), which monitors the ongoing oscillation periodicity and self-tunes accordingly. aDFC effectively disrupts collective neuronal oscillations restoring a more physiological state. Overall, these results support aDFC as a better candidate for therapeutic closed-loop brain stimulation.