1. Computational and Systems Biology
  2. Microbiology and Infectious Disease
Download icon

MiSiC, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities

  1. Swapnesh Panigrahi
  2. Dorothée Murat
  3. Antoine Le Gall
  4. Eugénie Martineau
  5. Kelly Goldlust
  6. Jean-Bernard Fiche
  7. Sara Rombouts
  8. Marcelo Nöllmann​
  9. Leon Espinosa
  10. Tâm Mignot  Is a corresponding author
  1. CNRS-Aix Marseille University, France
  2. CNRS UMR 5048, INSERM U1054, Université de Montpellier, France
  3. Aix Marseille Université, France
Tools and Resources
  • Cited 0
  • Views 182
  • Annotations
Cite this article as: eLife 2021;10:e65151 doi: 10.7554/eLife.65151

Abstract

Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.

Data availability

The tensorflow model describe in this article is available in GitHub :https://github.com/pswapnesh/MiSiChttps://github.com/leec13/MiSiCguiSource data files have been provided for Figures 2, 3, 4 and 5

Article and author information

Author details

  1. Swapnesh Panigrahi

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
  2. Dorothée Murat

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5809-9267
  3. Antoine Le Gall

    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  4. Eugénie Martineau

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
  5. Kelly Goldlust

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
  6. Jean-Bernard Fiche

    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  7. Sara Rombouts

    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  8. Marcelo Nöllmann​

    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  9. Leon Espinosa

    Laboratoire de Chimie Bactérienne UMR7283, Centre national de la recherche scientifique, Aix Marseille Université, Marseille, France
    Competing interests
    No competing interests declared.
  10. Tâm Mignot

    Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University, Marseille, France
    For correspondence
    tmignot@imm.cnrs.fr
    Competing interests
    Tâm Mignot, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4338-9063

Funding

ERC advanced grant (JAWS 885145)

  • Tâm Mignot

AMIDEX

  • Eugénie Martineau

ANR (IBM (ANR-14-CE09-0025-01))

  • Marcelo Nöllmann​

ANR (HiResBacs (ANR-15-CE11-0023))

  • Marcelo Nöllmann​

CNRS 80-prime

  • Swapnesh Panigrahi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jie Xiao, Johns Hopkins University, United States

Publication history

  1. Received: November 24, 2020
  2. Accepted: September 7, 2021
  3. Accepted Manuscript published: September 9, 2021 (version 1)

Copyright

© 2021, Panigrahi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 182
    Page views
  • 36
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Hannah R Meredith et al.
    Research Article

    Human mobility is a core component of human behavior and its quantification is critical for understanding its impact on infectious disease transmission, traffic forecasting, access to resources and care, intervention strategies, and migratory flows. When mobility data are limited, spatial interaction models have been widely used to estimate human travel, but have not been extensively validated in low- and middle-income settings. Geographic, sociodemographic, and infrastructure differences may impact the ability for models to capture these patterns, particularly in rural settings. Here, we analyzed mobility patterns inferred from mobile phone data in four Sub-Saharan African countries to investigate the ability for variants on gravity and radiation models to estimate travel. Adjusting the gravity model such that parameters were fit to different trip types, including travel between more or less populated areas and/or different regions, improved model fit in all four countries. This suggests that alternative models may be more useful in these settings and better able to capture the range of mobility patterns observed.

    1. Computational and Systems Biology
    Daniel Griffith, Alex S Holehouse
    Tools and Resources

    The rise of high-throughput experiments has transformed how scientists approach biological questions. The ubiquity of large-scale assays that can test thousands of samples in a day has necessitated the development of new computational approaches to interpret this data. Among these tools, machine learning approaches are increasingly being utilized due to their ability to infer complex nonlinear patterns from high-dimensional data. Despite their effectiveness, machine learning (and in particular deep learning) approaches are not always accessible or easy to implement for those with limited computational expertise. Here we present PARROT, a general framework for training and applying deep learning-based predictors on large protein datasets. Using an internal recurrent neural network architecture, PARROT is capable of tackling both classification and regression tasks while only requiring raw protein sequences as input. We showcase the potential uses of PARROT on three diverse machine learning tasks: predicting phosphorylation sites, predicting transcriptional activation function of peptides generated by high-throughput reporter assays, and predicting the fibrillization propensity of amyloid beta with data generated by deep mutational scanning. Through these examples, we demonstrate that PARROT is easy to use, performs comparably to state-of-the-art computational tools, and is applicable for a wide array of biological problems.