Enzymes: The two roles of complex III in plants

Atomic structures of mitochondrial enzyme complexes in plants are shedding light on their multiple functions.
  • Download
  • Cite
  • CommentOpen annotations (there are currently 0 annotations on this page).
  1. Hans-Peter Braun  Is a corresponding author
  1. Institut für Pflanzengenetik, Leibniz Universität Hannover, Germany

Every year land plants assimilate about 120 billion tons of carbon from the atmosphere through photosynthesis (Jung et al., 2011). However, plants also rely on respiration to produce energy, and this puts about half the amount of carbon back into the atmosphere (Gonzalez-Meler et al., 2004). Mitochondria have a central role in cellular respiration in plants and other eukaryotes, harboring the enzymes involved in the citric acid cycle and the respiratory electron transport chain.

The basic functioning of mitochondria is highly conserved across evolution. In plants, however, these organelles perform additional roles linked to photosynthesis (Millar et al., 2011). In particular, under certain conditions they employ enzymes called alternative oxidoreductases, which may help to reduce the formation of reactive oxygen species (Vanlerberghe, 2013).

The mitochondrial electron transport chain is similar in plants, fungi and animals, where it is formed of four enzyme complexes – complex I, II, III and IV – as well as further components such as cytochrome c and the lipid ubiquinone. In plants, alternative oxidoreductases are also involved. The structure and function of the complexes I to IV have been extensively investigated in animals and fungi, but less so in plants. Now, in eLife, Maria Maldonado, Fei Guo and James Letts from the University of California Davis present the first atomic models of the complexes III and IV from plants, giving astonishing insights into how the mitochondrial electron transport chain works in these organisms (Maldonado et al., 2021).

For their investigation, Maldonado et al. isolated mitochondria from etiolated mung bean seedlings; the protein complexes of the electron transport chain were then purified, and their structure was analyzed using a new experimental strategy based on single-particle cryo-electron microscopy combined with computer-based image processing (Kuhlbrandt, 2014). The team used pictures of 190,000 complex I particles, 48,000 complex III2 particles (III2 is the dimer formed by complex III), and 28,000 particles of a supercomplex consisting of complexes III2 and IV. Average structures of all three types of particles were calculated with resolutions in the range of 3.5 Angstroms, which allow side chains of amino acids to become visible. Finally, the amino acid sequences of the protein subunits were fitted into the structures, generating models of the protein complex at atomic resolution. Results of this experimental approach on a large subcomplex of plant complex I have been published before, and they revealed an extra functional module that may be relevant when cellular respiration takes place alongside photosynthesis (Maldonado et al., 2020). This suggests that complex I has additional roles in plants.

Now, the atomic models for plant complex III2 and the supercomplex III2-IV indicate that these share highly conserved features with the corresponding animal and fungi structures. The plant complex IV, for instance, which had never been precisely defined so far, consists of 10 protein subunits that are all homologs of animal and fungi complex IV subunits. Similarly, plant complex III2, which is formed of a pair of 10 subunits, much resembles its animal and fungi counterparts, and performs a similar role in cellular respiration (Figure 1).

Reactions catalyzed by complex III2 in plant mitochondria.

Complex III2 is an enzyme complex embedded in the inner membrane (light gray band) that separates the matrix (top) and the inter-membrane space (IMS; bottom) in mitochondria. One of the reactions it …

However, at the same time, complex III2 is special in plants because it also includes the activity of the mitochondrial processing peptidase (MPP for short), an enzyme which cleaves off the transit sequences that help to import certain preproteins into mitochondria (Braun et al., 1992; Eriksson et al., 1994; Figure 1). For the very first time, structural details of the two MPP subunits of plant complex III2 are presented, showing that they form a large central cavity with a negative surface that is probably essential for preprotein binding. The structural model also includes a catalytic zinc ion at the active site of the subunit which cleaves the preproteins. In addition, compared to similar protein subunits in animal or fungi complex III2, the plant MPP subunits are more stably connected to the remaining complex III2 subunits. Finally, Maldonado et al. offer further structural insights into the functioning of complex IV and supercomplex III2-IV, which provide clues as to the way their enzyme activities take place.

Overall, the bifunctionality of complex III2 in plants may be another example that mitochondria work differently in the context of photosynthesis. Indeed, the way MPP is attached to complex III reflects that the presence of chloroplasts makes it more complicated for proteins to be transported and processed within plant cells. The atomic models revealed by Maldonado et al. will help further genetic and biochemical investigations into the physiology of the mitochondrial electron transport chain of plants.

References

Article and author information

Author details

  1. Hans-Peter Braun

    Hans-Peter Braun is at the Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany

    For correspondence
    braun@genetik.uni-hannover.de
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4459-9727

Publication history

  1. Version of Record published:

Copyright

© 2021, Braun

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 137
    downloads

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Further reading

    1. Plant Biology
    Maryam Rahmati Ishka, Hayley Sussman ... Magdalena M Julkowska
    Research Article

    Soil salinity is one of the major threats to agricultural productivity worldwide. Salt stress exposure alters root and shoots growth rates, thereby affecting overall plant performance. While past studies have extensively documented the effect of salt stress on root elongation and shoot development separately, here we take an innovative approach by examining the coordination of root and shoot growth under salt stress conditions. Utilizing a newly developed tool for quantifying the root:shoot ratio in agar-grown Arabidopsis seedlings, we found that salt stress results in a loss of coordination between root and shoot growth rates. We identify a specific gene cluster encoding domain-of-unknown-function 247 (DUF247), and characterize one of these genes as Salt Root:shoot Ratio Regulator Gene (SR3G). Further analysis elucidates the role of SR3G as a negative regulator of salt stress tolerance, revealing its function in regulating shoot growth, root suberization, and sodium accumulation. We further characterize that SR3G expression is modulated by WRKY75 transcription factor, known as a positive regulator of salt stress tolerance. Finally, we show that the salt stress sensitivity of wrky75 mutant is completely diminished when it is combined with sr3g mutation. Together, our results demonstrate that utilizing root:shoot ratio as an architectural feature leads to the discovery of a new stress resilience gene. The study’s innovative approach and findings not only contribute to our understanding of plant stress tolerance mechanisms but also open new avenues for genetic and agronomic strategies to enhance crop environmental resilience.

    1. Cell Biology
    2. Plant Biology
    Baihong Zhang, Shuqin Huang ... Wenli Chen
    Research Article

    Autophagy-related gene 6 (ATG6) plays a crucial role in plant immunity. Nonexpressor of pathogenesis-related genes 1 (NPR1) acts as a signaling hub of plant immunity. However, the relationship between ATG6 and NPR1 is unclear. Here, we find that ATG6 directly interacts with NPR1. ATG6 overexpression significantly increased nuclear accumulation of NPR1. Furthermore, we demonstrate that ATG6 increases NPR1 protein levels and improves its stability. Interestingly, ATG6 promotes the formation of SINCs (SA-induced NPR1 condensates)-like condensates. Additionally, ATG6 and NPR1 synergistically promote the expression of pathogenesis-related genes. Further results showed that silencing ATG6 in NPR1-GFP exacerbates Pst DC3000/avrRps4 infection, while double overexpression of ATG6 and NPR1 synergistically inhibits Pst DC3000/avrRps4 infection. In summary, our findings unveil an interplay of NPR1 with ATG6 and elucidate important molecular mechanisms for enhancing plant immunity.