1. Plant Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Enzymes: The two roles of complex III in plants

  1. Hans-Peter Braun  Is a corresponding author
  1. Institut für Pflanzengenetik, Leibniz Universität Hannover, Germany
Insight
Cite this article as: eLife 2021;10:e65239 doi: 10.7554/eLife.65239
1 figure

Figures

Reactions catalyzed by complex III2 in plant mitochondria.

Complex III2 is an enzyme complex embedded in the inner membrane (light gray band) that separates the matrix (top) and the inter-membrane space (IMS; bottom) in mitochondria. One of the reactions it catalyzes is an oxidoreduction, where two molecules of ubiquinol (QH2) are sequentially converted into ubiquinone (Q), two pairs of protons are released into the mitochondrial intermembrane space (IMS), and two pairs of electrons are transferred onto complex III2. Two of these electrons are sequentially transferred onto cytochrome c (cyt c), while the other two electrons are used to convert one molecule ubiquinone into ubiquinol. The latter step is linked to the uptake of two protons from the mitochondrial matrix. The overall reaction results in protons being translocated across the inner mitochondrial membrane, which is a key process in cellular respiration. However, in plants, complex III2 is also involved in another reaction: it helps mitochondrial preproteins mature by removing the import sequence necessary for their movement into the compartment (top).

Image credit: Shape of the complex III2 is adapted from Maldonado et al., 2021.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)