The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types

  1. Zharko Daniloski
  2. Tristan X Jordan
  3. Juliana K Ilmain
  4. Xinyi Guo
  5. Gira Bhabha
  6. Benjamin R tenOever  Is a corresponding author
  7. Neville E Sanjana  Is a corresponding author
  1. New York Genome Center, United States
  2. Icahn School of Medicine at Mount Sinai, United States
  3. New York University School of Medicine, United States

Abstract

A novel variant of the SARS-CoV-2 virus carrying a point mutation in the Spike protein (D614G) has recently emerged and rapidly surpassed others in prevalence. This mutation is in linkage disequilibrium with an ORF1b protein variant (P314L), making it difficult to discern the functional significance of the Spike D614G mutation from population genetics alone. Here, we perform site-directed mutagenesis on wild-type human codon optimized Spike to introduce the D614G variant. Using multiple human cell lines, including human lung epithelial cells, we found that the lentiviral particles pseudotyped with Spike D614G are more effective at transducing cells than ones pseudotyped with wild-type Spike. The increased transduction with Spike D614G ranged from 1.3 to 2.4-fold in Caco-2 and Calu-3 cells expressing endogenous ACE2, and 1.5 to 7.7-fold in A549ACE2 and Huh7.5ACE2 overexpressing ACE2. Furthermore, trans-complementation of SARS-CoV-2 virus with Spike D614G showed an increased infectivity of human cells. Although there is minimal difference in ACE2 receptor binding between the D614 and G614 Spike variants, we show that the G614 variant is more resistant to proteolytic cleavage in human cells, suggesting a possible mechanism for the increased transduction.

Data availability

All data generated or analyzed in this study are included in this published article and its supplementary information files. The Spike D614G expression plasmid has been deposited to Addgene (#166850).

The following previously published data sets were used

Article and author information

Author details

  1. Zharko Daniloski

    New York Genome Center, New York, United States
    Competing interests
    No competing interests declared.
  2. Tristan X Jordan

    Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  3. Juliana K Ilmain

    Cell Biology, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9507-5069
  4. Xinyi Guo

    New York Genome Center, New York, United States
    Competing interests
    No competing interests declared.
  5. Gira Bhabha

    Department of Cell Biology, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0624-6178
  6. Benjamin R tenOever

    Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    benjamin.tenoever@mssm.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0324-3078
  7. Neville E Sanjana

    New York Genome Center, New York, United States
    For correspondence
    neville@sanjanalab.org
    Competing interests
    Neville E Sanjana, N.E.S. is an advisor to Vertex..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1504-0027

Funding

American Heart Association (20POST35220040)

  • Zharko Daniloski

Sidney Kimmel Foundation

  • Neville E Sanjana

National Institute of Allergy and Infectious Diseases (R01AI123155)

  • Tristan X Jordan

Pew Charitable Trusts (PEW-00033055)

  • Gira Bhabha

Searle Scholars Program (SSP-2018-2737)

  • Gira Bhabha

National Institute of Allergy and Infectious Diseases (R01AI147131)

  • Gira Bhabha

Defense Advanced Research Projects Agency (HR0011-20-2-0040)

  • Benjamin R tenOever

National Human Genome Research Institute (DP2HG010099)

  • Neville E Sanjana

National Cancer Institute (R01CA218668)

  • Neville E Sanjana

Defense Advanced Research Projects Agency (D18AP00053)

  • Neville E Sanjana

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frank Kirchhoff, Ulm University Medical Center, Germany

Version history

  1. Received: December 2, 2020
  2. Accepted: February 10, 2021
  3. Accepted Manuscript published: February 11, 2021 (version 1)
  4. Version of Record published: February 18, 2021 (version 2)

Copyright

© 2021, Daniloski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,261
    views
  • 919
    downloads
  • 182
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zharko Daniloski
  2. Tristan X Jordan
  3. Juliana K Ilmain
  4. Xinyi Guo
  5. Gira Bhabha
  6. Benjamin R tenOever
  7. Neville E Sanjana
(2021)
The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types
eLife 10:e65365.
https://doi.org/10.7554/eLife.65365

Share this article

https://doi.org/10.7554/eLife.65365

Further reading

    1. Epidemiology and Global Health
    Zhanwei Du, Lin Wang ... Lauren A Meyers
    Short Report

    Paxlovid, a SARS-CoV-2 antiviral, not only prevents severe illness but also curtails viral shedding, lowering transmission risks from treated patients. By fitting a mathematical model of within-host Omicron viral dynamics to electronic health records data from 208 hospitalized patients in Hong Kong, we estimate that Paxlovid can inhibit over 90% of viral replication. However, its effectiveness critically depends on the timing of treatment. If treatment is initiated three days after symptoms first appear, we estimate a 17% chance of a post-treatment viral rebound and a 12% (95% CI: 0%-16%) reduction in overall infectiousness for non-rebound cases. Earlier treatment significantly elevates the risk of rebound without further reducing infectiousness, whereas starting beyond five days reduces its efficacy in curbing peak viral shedding. Among the 104 patients who received Paxlovid, 62% began treatment within an optimal three-to-five-day day window after symptoms appeared. Our findings indicate that broader global access to Paxlovid, coupled with appropriately timed treatment, can mitigate the severity and transmission of SARS-Cov-2.

    1. Epidemiology and Global Health
    Yuchen Zhang, Yitang Sun ... Kaixiong Ye
    Research Article

    Background:

    Circulating omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been associated with various chronic diseases and mortality, but results are conflicting. Few studies examined the role of omega-6/omega-3 ratio in mortality.

    Methods:

    We investigated plasma omega-3 and omega-6 PUFAs and their ratio in relation to all-cause and cause-specific mortality in a large prospective cohort, the UK Biobank. Of 85,425 participants who had complete information on circulating PUFAs, 6461 died during follow-up, including 2794 from cancer and 1668 from cardiovascular disease (CVD). Associations were estimated by multivariable Cox proportional hazards regression with adjustment for relevant risk factors.

    Results:

    Risk for all three mortality outcomes increased as the ratio of omega-6/omega-3 PUFAs increased (all Ptrend <0.05). Comparing the highest to the lowest quintiles, individuals had 26% (95% CI, 15–38%) higher total mortality, 14% (95% CI, 0–31%) higher cancer mortality, and 31% (95% CI, 10–55%) higher CVD mortality. Moreover, omega-3 and omega-6 PUFAs in plasma were all inversely associated with all-cause, cancer, and CVD mortality, with omega-3 showing stronger effects.

    Conclusions:

    Using a population-based cohort in UK Biobank, our study revealed a strong association between the ratio of circulating omega-6/omega-3 PUFAs and the risk of all-cause, cancer, and CVD mortality.

    Funding:

    Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institute of Health under the award number R35GM143060 (KY). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.