1. Cell Biology
  2. Chromosomes and Gene Expression
Download icon

DDK regulates replication initiation by controlling the multiplicity of Cdc45-GINS binding to Mcm2-7

  1. Lorraine De Jesus Kim
  2. Larry J Friedman
  3. Marko Looke
  4. Christian K Ramsoomair
  5. Jeff Gelles  Is a corresponding author
  6. Stephen P Bell  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Brandeis University, United States
  3. Howard Hughes Medical Institute, Massachusetts Institute of Technology, United States
Research Article
  • Cited 0
  • Views 332
  • Annotations
Cite this article as: eLife 2021;10:e65471 doi: 10.7554/eLife.65471

Abstract

The committed step of eukaryotic DNA replication occurs when the pairs of Mcm2-7 replicative helicases that license each replication origin are activated. Helicase activation requires the recruitment of Cdc45 and GINS to Mcm2-7, forming Cdc45-Mcm2-7-GINS complexes (CMGs). Using single-molecule biochemical assays to monitor CMG formation, we found that Cdc45 and GINS are recruited to loaded Mcm2-7 in two stages. Initially, Cdc45, GINS, and likely additional proteins are recruited to unstructured Mcm2-7 N-terminal tails in a Dbf4-dependent kinase (DDK)-dependent manner, forming Cdc45-tail-GINS intermediates (CtGs). DDK phosphorylation of multiple phosphorylation sites on the Mcm2‑7 tails modulates the number of CtGs formed per Mcm2-7. In a second, inefficient event, a subset of CtGs transfer their Cdc45 and GINS components to form CMGs. Importantly, higher CtG multiplicity increases the frequency of CMG formation. Our findings reveal molecular mechanisms sensitizing helicase activation to DDK levels with implications for control of replication origin efficiency and timing.

Article and author information

Author details

  1. Lorraine De Jesus Kim

    Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Larry J Friedman

    Department of Biochemistry, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4946-8731
  3. Marko Looke

    Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christian K Ramsoomair

    Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeff Gelles

    Department of Biochemistry, Brandeis University, Waltham, United States
    For correspondence
    gelles@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7910-3421
  6. Stephen P Bell

    Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    spbell@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2876-610X

Funding

Howard Hughes Medical Institute (Investigator)

  • Stephen P Bell

National Institutes of Health (R01 GM52339)

  • Stephen P Bell

National Institutes of Health (R01 GM81648)

  • Jeff Gelles

National Institutes of Health (T32 GM007287)

  • Lorraine De Jesus Kim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael R Botchan, University of California, Berkeley, United States

Publication history

  1. Received: December 4, 2020
  2. Accepted: February 21, 2021
  3. Accepted Manuscript published: February 22, 2021 (version 1)

Copyright

© 2021, De Jesus Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 332
    Page views
  • 80
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Haibin Yang et al.
    Research Article Updated

    Communications between actin filaments and integrin-mediated focal adhesion (FA) are crucial for cell adhesion and migration. As a core platform to organize FA proteins, the tripartite ILK/PINCH/Parvin (IPP) complex interacts with actin filaments to regulate the cytoskeleton-FA crosstalk. Rsu1, a Ras suppressor, is enriched in FA through PINCH1 and plays important roles in regulating F-actin structures. Here, we solved crystal structures of the Rsu1/PINCH1 complex, in which the leucine-rich-repeats of Rsu1 form a solenoid structure to tightly associate with the C-terminal region of PINCH1. Further structural analysis uncovered that the interaction between Rsu1 and PINCH1 blocks the IPP-mediated F-actin bundling by disrupting the binding of PINCH1 to actin. Consistently, overexpressing Rsu1 in HeLa cells impairs stress fiber formation and cell spreading. Together, our findings demonstrated that Rsu1 is critical for tuning the communication between F-actin and FA by interacting with the IPP complex and negatively modulating the F-actin bundling.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Qiuying Liu et al.
    Research Article Updated

    The regulation of stem cell fate is poorly understood. Genetic studies in Caenorhabditis elegans lead to the hypothesis that a conserved cytoplasmic double-negative feedback loop consisting of the RNA-binding protein Trim71 and the let-7 microRNA controls the pluripotency and differentiation of stem cells. Although let-7-microRNA-mediated inhibition of Trim71 promotes differentiation, whether and how Trim71 regulates pluripotency and inhibits the let-7 microRNA are still unknown. Here, we show that Trim71 represses Ago2 mRNA translation in mouse embryonic stem cells. Blocking this repression leads to a specific post-transcriptional increase of mature let-7 microRNAs, resulting in let-7-dependent stemness defects and accelerated differentiation in the stem cells. These results not only support the Trim71-let-7-microRNA bi-stable switch model in controlling stem cell fate, but also reveal that repressing the conserved pro-differentiation let-7 microRNAs at the mature microRNA level by Ago2 availability is critical to maintaining pluripotency.