Abstract

The clinical and largely unpredictable heterogeneity of phenotypes in patients with mitochondrial disorders demonstrates the ongoing challenges in the understanding of this semi-autonomous organelle in biology and disease. Previously, we used the gene-breaking transposon to create 1200 transgenic zebrafish strains tagging protein-coding genes (1), including the lrpprc locus. Here we present and characterize a new genetic revertible animal model that recapitulates components of Leigh Syndrome French Canadian Type (LSFC), a mitochondrial disorder that includes diagnostic liver dysfunction. LSFC is caused by allelic variations in the LRPPRC gene, involved in mitochondrial mRNA polyadenylation and translation. lrpprc zebrafish homozygous mutants displayed biochemical and mitochondrial phenotypes similar to clinical manifestations observed in patients, including dysfunction in lipid homeostasis. We were able to rescue these phenotypes in the disease model using a liver-specific genetic model therapy, functionally demonstrating a previously under-recognized critical role for the liver in the pathophysiology of this disease.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data is provided along with the manuscript. Raw sequencing data has been uploaded on NCBI SRA. ID: PRJNA683704

The following data sets were generated

Article and author information

Author details

  1. Ankit Sabharwal

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4355-0355
  2. Mark D Wishman

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Roberto Lopez Cervera

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. MaKayla R Serres

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jennifer L Anderson

    Department of Embryology, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shannon R Holmberg

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bibekananda Kar

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Anthony J Treichel

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4393-7034
  9. Noriko Ichino

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7009-8299
  10. Weibin Liu

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jingchun Yang

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Yonghe Ding

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Yun Deng

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Jean M Lacey

    Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. William J Laxen

    Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Perry R Loken

    Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Devin Oglesbee

    Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Steven Arthur Farber

    Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8037-7312
  19. Karl J Clark

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9637-0967
  20. Xiaolei Xu

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4928-3422
  21. Stephen C Ekker

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    For correspondence
    ekker.stephen@mayo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0726-4212

Funding

National Institutes of Health (GM63904)

  • Stephen C Ekker

National Institutes of Health (DA14546)

  • Stephen C Ekker

Marriott Foundation

  • Stephen C Ekker

Mayo Foundation for Medical Education and Research

  • Stephen C Ekker

National Institutes of Health (DK093399)

  • Steven Arthur Farber

Carnegie Institution for Science

  • Steven Arthur Farber

G. Harold and Leila Y. Mathers Charitable Foundation

  • Steven Arthur Farber

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All adult zebrafish and embryos were maintained according to the guidelines established by Mayo Clinic Institutional Animal Care and Use Committee (IACUC number: A34513-13-R16).

Copyright

© 2022, Sabharwal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,202
    views
  • 190
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ankit Sabharwal
  2. Mark D Wishman
  3. Roberto Lopez Cervera
  4. MaKayla R Serres
  5. Jennifer L Anderson
  6. Shannon R Holmberg
  7. Bibekananda Kar
  8. Anthony J Treichel
  9. Noriko Ichino
  10. Weibin Liu
  11. Jingchun Yang
  12. Yonghe Ding
  13. Yun Deng
  14. Jean M Lacey
  15. William J Laxen
  16. Perry R Loken
  17. Devin Oglesbee
  18. Steven Arthur Farber
  19. Karl J Clark
  20. Xiaolei Xu
  21. Stephen C Ekker
(2022)
Genetic therapy in a mitochondrial disease model suggests a critical role for liver dysfunction in mortality
eLife 11:e65488.
https://doi.org/10.7554/eLife.65488

Share this article

https://doi.org/10.7554/eLife.65488

Further reading

    1. Developmental Biology
    Pablo Sanchez Bosch, Bomsoo Cho, Jeffrey D Axelrod
    Research Article

    The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion. Despite its ubiquitous presence, the mechanisms governing cell competition, particularly those common to developmental competition and tumorigenesis, are poorly understood. Here, we show that in Drosophila, the planar cell polarity (PCP) protein Flamingo (Fmi) is required by winners to maintain their status during cell competition in malignant tumors to overtake healthy tissue, in early pre-malignant cells when they overproliferate among wildtype cells, in healthy cells when they later eliminate pre-malignant cells, and by supercompetitors as they compete to occupy excessive territory within wildtype tissues. ‘Would-be’ winners that lack Fmi are unable to overproliferate, and instead become losers. We demonstrate that the role of Fmi in cell competition is independent of PCP, and that it uses a distinct mechanism that may more closely resemble one used in other less well-defined functions of Fmi.

    1. Developmental Biology
    Natsuko Emura, Florence DM Wavreil ... Mamiko Yajima
    Research Article

    The evolutionary introduction of asymmetric cell division (ACD) into the developmental program facilitates the formation of a new cell type, contributing to developmental diversity and, eventually, species diversification. The micromere of the sea urchin embryo may serve as one of those examples: an ACD at the 16-cell stage forms micromeres unique to echinoids among echinoderms. We previously reported that a polarity factor, activator of G-protein signaling (AGS), plays a crucial role in micromere formation. However, AGS and its associated ACD factors are present in all echinoderms and across most metazoans. This raises the question of what evolutionary modifications of AGS protein or its surrounding molecular environment contributed to the evolutionary acquisition of micromeres only in echinoids. In this study, we learned that the GoLoco motifs at the AGS C-terminus play critical roles in regulating micromere formation in sea urchin embryos. Further, other echinoderms’ AGS or chimeric AGS that contain the C-terminus of AGS orthologs from various organisms showed varied localization and function in micromere formation. In contrast, the sea star or the pencil urchin orthologs of other ACD factors were consistently localized at the vegetal cortex in the sea urchin embryo, suggesting that AGS may be a unique variable factor that facilitates ACD diversity among echinoderms. Consistently, sea urchin AGS appears to facilitate micromere-like cell formation and accelerate the enrichment timing of the germline factor Vasa during early embryogenesis of the pencil urchin, an ancestral type of sea urchin. Based on these observations, we propose that the molecular evolution of a single polarity factor facilitates ACD diversity while preserving the core ACD machinery among echinoderms and beyond during evolution.