High infectiousness immediately before COVID-19 symptom onset highlights the importance of continued contact tracing

  1. William Stephen Hart  Is a corresponding author
  2. Philip K Maini
  3. Robin N Thompson
  1. University of Oxford, United Kingdom
  2. University of Warwick, United Kingdom

Abstract

Background: Understanding changes in infectiousness during SARS-COV-2 infections is critical to assess the effectiveness of public health measures such as contact tracing.

Methods: Here, we develop a novel mechanistic approach to infer the infectiousness profile of SARS-COV-2 infected individuals using data from known infector-infectee pairs. We compare estimates of key epidemiological quantities generated using our mechanistic method with analogous estimates generated using previous approaches.

Results: The mechanistic method provides an improved fit to data from SARS-CoV-2 infector-infectee pairs compared to commonly used approaches. Our best-fitting model indicates a high proportion of presymptomatic transmissions, with many transmissions occurring shortly before the infector develops symptoms.

Conclusions: High infectiousness immediately prior to symptom onset highlights the importance of continued contact tracing until effective vaccines have been distributed widely, even if contacts from a short time window before symptom onset alone are traced.

Funding: Engineering and Physical Sciences Research Council (EPSRC).

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. A source data file has been provided for Figure 2, containing the SARS-CoV-2 transmission pair data used in our analyses. These data were originally reported in references (3,10,29-31), and the combined data were also considered in reference (4). Code for reproducing our results is available at https://github.com/will-s-hart/COVID-19-Infectiousness-Profile.

Article and author information

Author details

  1. William Stephen Hart

    Mathematical Institute, University of Oxford, Oxford, United Kingdom
    For correspondence
    william.hart@keble.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2504-6860
  2. Philip K Maini

    Mathematical Institute, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Robin N Thompson

    Mathematics Institute, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Engineering and Physical Sciences Research Council (Excellence Award)

  • William Stephen Hart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Hart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,634
    views
  • 295
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William Stephen Hart
  2. Philip K Maini
  3. Robin N Thompson
(2021)
High infectiousness immediately before COVID-19 symptom onset highlights the importance of continued contact tracing
eLife 10:e65534.
https://doi.org/10.7554/eLife.65534

Share this article

https://doi.org/10.7554/eLife.65534

Further reading

    1. Epidemiology and Global Health
    2. Medicine
    3. Microbiology and Infectious Disease
    Edited by Diane M Harper et al.
    Collection

    eLife has published the following articles on SARS-CoV-2 and COVID-19.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Bo Zheng, Bronner P Gonçalves ... Caoyi Xue
    Research Article

    Background:

    In many settings, a large fraction of the population has both been vaccinated against and infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, quantifying the protection provided by post-infection vaccination has become critical for policy. We aimed to estimate the protective effect against SARS-CoV-2 reinfection of an additional vaccine dose after an initial Omicron variant infection.

    Methods:

    We report a retrospective, population-based cohort study performed in Shanghai, China, using electronic databases with information on SARS-CoV-2 infections and vaccination history. We compared reinfection incidence by post-infection vaccination status in individuals initially infected during the April–May 2022 Omicron variant surge in Shanghai and who had been vaccinated before that period. Cox models were fit to estimate adjusted hazard ratios (aHRs).

    Results:

    275,896 individuals were diagnosed with real-time polymerase chain reaction-confirmed SARS-CoV-2 infection in April–May 2022; 199,312/275,896 were included in analyses on the effect of a post-infection vaccine dose. Post-infection vaccination provided protection against reinfection (aHR 0.82; 95% confidence interval 0.79–0.85). For patients who had received one, two, or three vaccine doses before their first infection, hazard ratios for the post-infection vaccination effect were 0.84 (0.76–0.93), 0.87 (0.83–0.90), and 0.96 (0.74–1.23), respectively. Post-infection vaccination within 30 and 90 days before the second Omicron wave provided different degrees of protection (in aHR): 0.51 (0.44–0.58) and 0.67 (0.61–0.74), respectively. Moreover, for all vaccine types, but to different extents, a post-infection dose given to individuals who were fully vaccinated before first infection was protective.

    Conclusions:

    In previously vaccinated and infected individuals, an additional vaccine dose provided protection against Omicron variant reinfection. These observations will inform future policy decisions on COVID-19 vaccination in China and other countries.

    Funding:

    This study was funded the Key Discipline Program of Pudong New Area Health System (PWZxk2022-25), the Development and Application of Intelligent Epidemic Surveillance and AI Analysis System (21002411400), the Shanghai Public Health System Construction (GWVI-11.2-XD08), the Shanghai Health Commission Key Disciplines (GWVI-11.1-02), the Shanghai Health Commission Clinical Research Program (20214Y0020), the Shanghai Natural Science Foundation (22ZR1414600), and the Shanghai Young Health Talents Program (2022YQ076).