1. Epidemiology and Global Health
  2. Microbiology and Infectious Disease
Download icon

Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses

  1. Dylan H Morris  Is a corresponding author
  2. Kwe Claude Yinda
  3. Amandine Gamble
  4. Fernando W Rossine
  5. Qishen Huang
  6. Trenton Bushmaker
  7. Robert J Fischer
  8. M Jeremiah Matson
  9. Neeltje Van Doremalen
  10. Peter J Vikesland
  11. Linsey C Marr
  12. Vincent J Munster
  13. James O Lloyd-Smith  Is a corresponding author
  1. Princeton University, United States
  2. National Institute of Allergy and Infectious Diseases, United States
  3. University of California, Los Angeles, United States
  4. Virginia Tech, United States
Research Article
  • Cited 0
  • Views 753
  • Annotations
Cite this article as: eLife 2021;10:e65902 doi: 10.7554/eLife.65902

Abstract

Ambient temperature and humidity strongly affect inactivation rates of enveloped viruses, but a mechanistic, quantitative theory of these effects has been elusive. We measure the stability of SARS-CoV-2 on an inert surface at nine temperature and humidity conditions and develop a mechanistic model to explain and predict how temperature and humidity alter virus inactivation. We find SARS-CoV-2 survives longest at low temperatures and extreme relative humidities (RH); median estimated virus half-life is >24 hours at 10C and 40% RH, but ~1.5 hours at 27C and 65% RH. Our mechanistic model uses fundamental chemistry to explain why inactivation rate increases with increased temperature and shows a U-shaped dependence on RH. The model accurately predicts existing measurements of five different human coronaviruses, suggesting that shared mechanisms may affect stability for many viruses. The results indicate scenarios of high transmission risk, point to mitigation strategies, and advance the mechanistic study of virus transmission.

Data availability

All code and data needed to reproduce results and figures is archived on Github (https://github.com/dylanhmorris/sars-cov-2-temp-humidity/) and on Zenodo (https://doi.org/10.5281/zenodo.4093264), and licensed for reuse, with appropriate attribution/citation, under a BSD 3-Clause Revised License. This includes all original data generated in the experiments and all data collected and used for meta-analysis.

Article and author information

Author details

  1. Dylan H Morris

    Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    For correspondence
    dhmorris@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3655-406X
  2. Kwe Claude Yinda

    Virus Ecology Unit, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amandine Gamble

    Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fernando W Rossine

    Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Qishen Huang

    Civil and Environmental Engineering, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Trenton Bushmaker

    Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Robert J Fischer

    Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. M Jeremiah Matson

    Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Neeltje Van Doremalen

    Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4368-6359
  10. Peter J Vikesland

    Civil and Environmental Engineering, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Linsey C Marr

    Civil and Environmental Engineering, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Vincent J Munster

    Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. James O Lloyd-Smith

    Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    jlloydsmith@ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7941-502X

Funding

National Science Foundation (CCF 1917819)

  • Dylan H Morris

Defense Advanced Research Projects Agency (D18AC00031)

  • Amandine Gamble
  • James O Lloyd-Smith

UCLA AIDS Institute and Charity Treks

  • Amandine Gamble
  • James O Lloyd-Smith

National Institute of Allergy and Infectious Diseases (Intramural Research Program)

  • Kwe Claude Yinda
  • Trenton Bushmaker
  • Robert J Fischer
  • M Jeremiah Matson
  • Neeltje Van Doremalen
  • Vincent J Munster

National Science Foundation (DEB-1557022)

  • James O Lloyd-Smith

Strategic Environmental Research and Development Program (RC‐2635)

  • James O Lloyd-Smith

National Science Foundation (CBET-1705653)

  • Qishen Huang
  • Peter J Vikesland
  • Linsey C Marr

National Science Foundation (CBET-2029911)

  • Qishen Huang
  • Peter J Vikesland
  • Linsey C Marr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. C. Brandon Ogbunugafor, Yale University, United States

Publication history

  1. Received: December 18, 2020
  2. Accepted: February 20, 2021
  3. Accepted Manuscript published: April 27, 2021 (version 1)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 753
    Page views
  • 136
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Epidemiology and Global Health
    2. Medicine
    Jackie Knee et al.
    Research Article Updated

    We conducted a controlled before-and-after trial to evaluate the impact of an onsite urban sanitation intervention on the prevalence of enteric infection, soil transmitted helminth re-infection, and diarrhea among children in Maputo, Mozambique. A non-governmental organization replaced existing poor-quality latrines with pour-flush toilets with septic tanks serving household clusters. We enrolled children aged 1–48 months at baseline and measured outcomes before and 12 and 24 months after the intervention, with concurrent measurement among children in a comparable control arm. Despite nearly exclusive use, we found no evidence that intervention affected the prevalence of any measured outcome after 12 or 24 months of exposure. Among children born into study sites after intervention, we observed a reduced prevalence of Trichuris and Shigella infection relative to the same age group at baseline (<2 years old). Protection from birth may be important to reduce exposure to and infection with enteric pathogens in this setting.

    1. Epidemiology and Global Health
    2. Medicine
    Adrian V Jaeggi et al.
    Research Article

    In high-income countries, one's relative socio-economic position and economic inequality may affect health and well-being, arguably via psychosocial stress. We tested this in a small-scale subsistence society, the Tsimane, by associating relative household wealth (n=871) and community-level wealth inequality (n=40, Gini = 0.15 – 0.53) with a range of psychological variables, stressors, and health outcomes (depressive symptoms [n=670], social conflicts [n=401], non-social problems [n=398], social support [n=399], cortisol [n=811], BMI [n=9926], blood pressure [n=3195], self-rated health [n=2523], morbidities [n=1542]) controlling for community-average wealth, age, sex, household size, community size, and distance to markets. Wealthier people largely had better outcomes while inequality associated with more respiratory disease, a leading cause of mortality. Greater inequality and lower wealth were associated with higher blood pressure. Psychosocial factors didn't mediate wealth-health associations. Thus, relative socio-economic position and inequality may affect health across diverse societies, though this is likely exacerbated in high-income countries.