Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses

  1. Dylan H Morris  Is a corresponding author
  2. Kwe Claude Yinda
  3. Amandine Gamble
  4. Fernando W Rossine
  5. Qishen Huang
  6. Trenton Bushmaker
  7. Robert J Fischer
  8. M Jeremiah Matson
  9. Neeltje Van Doremalen
  10. Peter J Vikesland
  11. Linsey C Marr
  12. Vincent J Munster
  13. James O Lloyd-Smith  Is a corresponding author
  1. Princeton University, United States
  2. National Institute of Allergy and Infectious Diseases, United States
  3. University of California, Los Angeles, United States
  4. Virginia Tech, United States

Abstract

Ambient temperature and humidity strongly affect inactivation rates of enveloped viruses, but a mechanistic, quantitative theory of these effects has been elusive. We measure the stability of SARS-CoV-2 on an inert surface at nine temperature and humidity conditions and develop a mechanistic model to explain and predict how temperature and humidity alter virus inactivation. We find SARS-CoV-2 survives longest at low temperatures and extreme relative humidities (RH); median estimated virus half-life is >24 hours at 10C and 40% RH, but ~1.5 hours at 27C and 65% RH. Our mechanistic model uses fundamental chemistry to explain why inactivation rate increases with increased temperature and shows a U-shaped dependence on RH. The model accurately predicts existing measurements of five different human coronaviruses, suggesting that shared mechanisms may affect stability for many viruses. The results indicate scenarios of high transmission risk, point to mitigation strategies, and advance the mechanistic study of virus transmission.

Data availability

All code and data needed to reproduce results and figures is archived on Github (https://github.com/dylanhmorris/sars-cov-2-temp-humidity/) and on Zenodo (https://doi.org/10.5281/zenodo.4093264), and licensed for reuse, with appropriate attribution/citation, under a BSD 3-Clause Revised License. This includes all original data generated in the experiments and all data collected and used for meta-analysis.

Article and author information

Author details

  1. Dylan H Morris

    Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    For correspondence
    dhmorris@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3655-406X
  2. Kwe Claude Yinda

    Virus Ecology Unit, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amandine Gamble

    Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fernando W Rossine

    Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Qishen Huang

    Civil and Environmental Engineering, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Trenton Bushmaker

    Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Robert J Fischer

    Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. M Jeremiah Matson

    Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Neeltje Van Doremalen

    Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4368-6359
  10. Peter J Vikesland

    Civil and Environmental Engineering, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Linsey C Marr

    Civil and Environmental Engineering, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Vincent J Munster

    Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. James O Lloyd-Smith

    Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    jlloydsmith@ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7941-502X

Funding

National Science Foundation (CCF 1917819)

  • Dylan H Morris

Defense Advanced Research Projects Agency (D18AC00031)

  • Amandine Gamble
  • James O Lloyd-Smith

UCLA AIDS Institute and Charity Treks

  • Amandine Gamble
  • James O Lloyd-Smith

National Institute of Allergy and Infectious Diseases (Intramural Research Program)

  • Kwe Claude Yinda
  • Trenton Bushmaker
  • Robert J Fischer
  • M Jeremiah Matson
  • Neeltje Van Doremalen
  • Vincent J Munster

National Science Foundation (DEB-1557022)

  • James O Lloyd-Smith

Strategic Environmental Research and Development Program (RC‐2635)

  • James O Lloyd-Smith

National Science Foundation (CBET-1705653)

  • Qishen Huang
  • Peter J Vikesland
  • Linsey C Marr

National Science Foundation (CBET-2029911)

  • Qishen Huang
  • Peter J Vikesland
  • Linsey C Marr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. C. Brandon Ogbunugafor, Yale University, United States

Version history

  1. Received: December 18, 2020
  2. Accepted: February 20, 2021
  3. Accepted Manuscript published: April 27, 2021 (version 1)
  4. Version of Record published: July 13, 2021 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,856
    Page views
  • 801
    Downloads
  • 111
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dylan H Morris
  2. Kwe Claude Yinda
  3. Amandine Gamble
  4. Fernando W Rossine
  5. Qishen Huang
  6. Trenton Bushmaker
  7. Robert J Fischer
  8. M Jeremiah Matson
  9. Neeltje Van Doremalen
  10. Peter J Vikesland
  11. Linsey C Marr
  12. Vincent J Munster
  13. James O Lloyd-Smith
(2021)
Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses
eLife 10:e65902.
https://doi.org/10.7554/eLife.65902

Share this article

https://doi.org/10.7554/eLife.65902

Further reading

    1. Ecology
    2. Epidemiology and Global Health
    Aleksandra Kovacevic, David RM Smith ... Lulla Opatowski
    Research Article

    Non-pharmaceutical interventions implemented to block SARS-CoV-2 transmission in early 2020 led to global reductions in the incidence of invasive pneumococcal disease (IPD). By contrast, most European countries reported an increase in antibiotic resistance among invasive Streptococcus pneumoniae isolates from 2019 to 2020, while an increasing number of studies reported stable pneumococcal carriage prevalence over the same period. To disentangle the impacts of the COVID-19 pandemic on pneumococcal epidemiology in the community setting, we propose a mathematical model formalizing simultaneous transmission of SARS-CoV-2 and antibiotic-sensitive and -resistant strains of S. pneumoniae. To test hypotheses underlying these trends five mechanisms were built into the model and examined: (1) a population-wide reduction of antibiotic prescriptions in the community, (2) lockdown effect on pneumococcal transmission, (3) a reduced risk of developing an IPD due to the absence of common respiratory viruses, (4) community azithromycin use in COVID-19 infected individuals, (5) and a longer carriage duration of antibiotic-resistant pneumococcal strains. Among 31 possible pandemic scenarios involving mechanisms individually or in combination, model simulations surprisingly identified only two scenarios that reproduced the reported trends in the general population. They included factors (1), (3), and (4). These scenarios replicated a nearly 50% reduction in annual IPD, and an increase in antibiotic resistance from 20% to 22%, all while maintaining a relatively stable pneumococcal carriage. Exploring further, higher SARS-CoV-2 R0 values and synergistic within-host virus-bacteria interaction mechanisms could have additionally contributed to the observed antibiotic resistance increase. Our work demonstrates the utility of the mathematical modeling approach in unraveling the complex effects of the COVID-19 pandemic responses on AMR dynamics.

    1. Epidemiology and Global Health
    Olivera Djuric, Elisabetta Larosa ... The Reggio Emilia Covid-19 Working Group
    Research Article

    Background:

    The aim of our study was to test the hypothesis that the community contact tracing strategy of testing contacts in households immediately instead of at the end of quarantine had an impact on the transmission of SARS-CoV-2 in schools in Reggio Emilia Province.

    Methods:

    We analysed surveillance data on notification of COVID-19 cases in schools between 1 September 2020 and 4 April 2021. We have applied a mediation analysis that allows for interaction between the intervention (before/after period) and the mediator.

    Results:

    Median tracing delay decreased from 7 to 3.1 days and the percentage of the known infection source increased from 34–54.8% (incident rate ratio-IRR 1.61 1.40–1.86). Implementation of prompt contact tracing was associated with a 10% decrease in the number of secondary cases (excess relative risk –0.1 95% CI –0.35–0.15). Knowing the source of infection of the index case led to a decrease in secondary transmission (IRR 0.75 95% CI 0.63–0.91) while the decrease in tracing delay was associated with decreased risk of secondary cases (1/IRR 0.97 95% CI 0.94–1.01 per one day of delay). The direct effect of the intervention accounted for the 29% decrease in the number of secondary cases (excess relative risk –0.29 95%–0.61 to 0.03).

    Conclusions:

    Prompt contact testing in the community reduces the time of contact tracing and increases the ability to identify the source of infection in school outbreaks. Although there are strong reasons for thinking it is a causal link, observed differences can be also due to differences in the force of infection and to other control measures put in place.

    Funding:

    This project was carried out with the technical and financial support of the Italian Ministry of Health – CCM 2020 and Ricerca Corrente Annual Program 2023.