Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses

  1. Dylan H Morris  Is a corresponding author
  2. Kwe Claude Yinda
  3. Amandine Gamble
  4. Fernando W Rossine
  5. Qishen Huang
  6. Trenton Bushmaker
  7. Robert J Fischer
  8. M Jeremiah Matson
  9. Neeltje Van Doremalen
  10. Peter J Vikesland
  11. Linsey C Marr
  12. Vincent J Munster
  13. James O Lloyd-Smith  Is a corresponding author
  1. Princeton University, United States
  2. National Institute of Allergy and Infectious Diseases, United States
  3. University of California, Los Angeles, United States
  4. Virginia Tech, United States

Abstract

Ambient temperature and humidity strongly affect inactivation rates of enveloped viruses, but a mechanistic, quantitative theory of these effects has been elusive. We measure the stability of SARS-CoV-2 on an inert surface at nine temperature and humidity conditions and develop a mechanistic model to explain and predict how temperature and humidity alter virus inactivation. We find SARS-CoV-2 survives longest at low temperatures and extreme relative humidities (RH); median estimated virus half-life is >24 hours at 10C and 40% RH, but ~1.5 hours at 27C and 65% RH. Our mechanistic model uses fundamental chemistry to explain why inactivation rate increases with increased temperature and shows a U-shaped dependence on RH. The model accurately predicts existing measurements of five different human coronaviruses, suggesting that shared mechanisms may affect stability for many viruses. The results indicate scenarios of high transmission risk, point to mitigation strategies, and advance the mechanistic study of virus transmission.

Data availability

All code and data needed to reproduce results and figures is archived on Github (https://github.com/dylanhmorris/sars-cov-2-temp-humidity/) and on Zenodo (https://doi.org/10.5281/zenodo.4093264), and licensed for reuse, with appropriate attribution/citation, under a BSD 3-Clause Revised License. This includes all original data generated in the experiments and all data collected and used for meta-analysis.

Article and author information

Author details

  1. Dylan H Morris

    Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    For correspondence
    dhmorris@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3655-406X
  2. Kwe Claude Yinda

    Virus Ecology Unit, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amandine Gamble

    Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fernando W Rossine

    Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Qishen Huang

    Civil and Environmental Engineering, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Trenton Bushmaker

    Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Robert J Fischer

    Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. M Jeremiah Matson

    Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Neeltje Van Doremalen

    Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4368-6359
  10. Peter J Vikesland

    Civil and Environmental Engineering, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Linsey C Marr

    Civil and Environmental Engineering, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Vincent J Munster

    Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. James O Lloyd-Smith

    Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    jlloydsmith@ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7941-502X

Funding

National Science Foundation (CCF 1917819)

  • Dylan H Morris

Defense Advanced Research Projects Agency (D18AC00031)

  • Amandine Gamble
  • James O Lloyd-Smith

UCLA AIDS Institute and Charity Treks

  • Amandine Gamble
  • James O Lloyd-Smith

National Institute of Allergy and Infectious Diseases (Intramural Research Program)

  • Kwe Claude Yinda
  • Trenton Bushmaker
  • Robert J Fischer
  • M Jeremiah Matson
  • Neeltje Van Doremalen
  • Vincent J Munster

National Science Foundation (DEB-1557022)

  • James O Lloyd-Smith

Strategic Environmental Research and Development Program (RC‐2635)

  • James O Lloyd-Smith

National Science Foundation (CBET-1705653)

  • Qishen Huang
  • Peter J Vikesland
  • Linsey C Marr

National Science Foundation (CBET-2029911)

  • Qishen Huang
  • Peter J Vikesland
  • Linsey C Marr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 6,420
    views
  • 878
    downloads
  • 155
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dylan H Morris
  2. Kwe Claude Yinda
  3. Amandine Gamble
  4. Fernando W Rossine
  5. Qishen Huang
  6. Trenton Bushmaker
  7. Robert J Fischer
  8. M Jeremiah Matson
  9. Neeltje Van Doremalen
  10. Peter J Vikesland
  11. Linsey C Marr
  12. Vincent J Munster
  13. James O Lloyd-Smith
(2021)
Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses
eLife 10:e65902.
https://doi.org/10.7554/eLife.65902

Share this article

https://doi.org/10.7554/eLife.65902

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.

    1. Epidemiology and Global Health
    Riccardo Spott, Mathias W Pletz ... Christian Brandt
    Research Article

    Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in tracking lineage spread, we investigated the potential of combining mobile service data and fine-granular metadata (such as postal codes and genomic data) to advance integrated genomic surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 6500 SARS-CoV-2 Alpha genomes (B.1.1.7) across 7 months within Thuringia while collecting patients’ isolation dates and postal codes. Our dataset is complemented by over 66,000 publicly available German Alpha genomes and mobile service data for Thuringia. We identified the existence and spread of nine persistent mutation variants within the Alpha lineage, seven of which formed separate phylogenetic clusters with different spreading patterns in Thuringia. The remaining two are subclusters. Mobile service data can indicate these clusters’ spread and highlight a potential sampling bias, especially of low-prevalence variants. Thereby, mobile service data can be used either retrospectively to assess surveillance coverage and efficiency from already collected data or to actively guide part of a surveillance sampling process to districts where these variants are expected to emerge. The latter concept was successfully implemented as a proof-of-concept for a mobility-guided sampling strategy in response to the surveillance of Omicron sublineage BQ.1.1. The combination of mobile service data and SARS-CoV-2 surveillance by genome sequencing is a valuable tool for more targeted and responsive surveillance.